Response to irradiance of leaf net photosynthetic rates (PN) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m-2 s-1 at 20 °C and 350 μmol (CO2) mol-1(air). The values of PN were fitted to a rectangular hyperbolic nonlinear regression model. PN for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher PN than CC. None of the cultivars reached saturation at 1 000 μmol m-2 s-1. The predicted PN at saturation
(PNmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m-2 s-1, respectively. The compensation irradiance (I c) occurred at 54 μmol m-2 s-1 for Cascade, 36 μmol m-2 s-1 for CC, 45 μmol m-2 s-1 for Oranza, and 25 μmol m-2 s-1 for RCC. The quantum yield among the cultivars ranged between 0.057-0.033 mol(CO2) mol-1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m-2 s-1 for Cascade to 0.85 μmol m-2 s-1 for RCC. As PN increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m-2 s-1 followed by a steep decline resulting in sharp increases in water use efficiency. and S. Kyei-Boahen ... [et al.].
Significant differences in net photosynthetic rate (PN) of leaves between two maize (Zea mays L.) strains (Shuang 105 and 40×44) grown in the field were observed. At several growth stages, PN of 40×44 was higher than that of Shuang 105 (from 10.3 to 32.5 %). Moreover, the strain 40×44 had a higher plant height, larger leaf area, lower chlorophyll content, and higher photochemical efficiency of photosystem 2 (PS2) (Fv/Fm and ΔF/Fm') than strain Shuang 105. Shuang 105, which showed lower PN, had lower stomatal conductances (gs) but slightly higher intercellular CO2 concentrations (Ci) than those of 40×44. Hence the differences in
PN between the two strains did not result from the difference in gs, but probably from that in light reaction system. and Hua Jiang, Da-Quan Xu.
In Evernia prunastri, photosynthetic gas exchange was saturated with yellow radiation (SOX) at 400 μmol m-2s-1, and then red (R), far-red (FR), or blue (B) radiations at irradiance of 15 μmol m-2s-1 were added. Because of photosynthesis saturation, any stimulation or decay in CO2 assimilation by any radiation quality could be attributed to the involvement of a non-photosynthetic photoreceptor. Thus CO2 assimilation, effective quantum yield, and photochemical quenching were enhanced when R was included, and decreased with FR. Blue radiation completely abolished CO2 fixation. Hence different spectral radiation qualities may activate non-photosynthetic photoreceptors such as phytochrome and blue photoreceptors, which are involved in regulating the photosynthetic activity in E. prunastri. and M. Segovia, F. L. Figueroa.
Flooding stress (FS) induced changes in pigment and protein contents and in photochemical efficiency of thylakoid membranes of chloroplasts were investigated during senescence of primary leaves of rice seedlings. Leaf senescence was accompanied by loss in 2,6-dichlorophenolindophenol (DCPIP) photoreduction, rate of oxygen evolution, quantum yield of photosystem 2 with an increase in MDA accumulation, and non-photochemical quenching (NPQ) of chlorophyll fluorescence. These changes were further aggravated when the leaves during this period experienced FS. The increase in NPQ value under stress may indicate photosynthetic adaptation to FS. and S. K. Mishra ... [et al.].
Nowadays, a quest for efficient greenhouse heating strategies, and their related effects on the plant's performance, exists. In this study, the effects of a combination of warm days and cool nights in autumn and spring on the photosynthetic activity and efficiency of Phalaenopsis were evaluated; the latter, being poorly characterised in plants with crassulacean acid metabolism (CAM) and, to our knowledge, not reported before in Phalaenopsis. 24-h CO2 flux measurements and chlorophyll (Chl) fluorescence analyses were performed in both seasons on Phalaenopsis 'Hercules' exposed to relatively constant temperature regimes, 25.5/24.0°C (autumn) and 30/27°C (spring) respectively, and distinctive warm day/cool night temperature regimes, 27/20°C (autumn) and 36/24°C (spring), respectively. Cumulated leaf net CO2 uptake of the distinctive warm day/cool night temperature regimes declined with 10-16% as compared to the more constant temperature regimes, while the efficiency of carbon fixation revealed no substantial differences in both seasons. Nevertheless, a distinctive warm day/cool night temperature regime seemed to induce photorespiration. Although photorespiration is expected not to occur in CAM, the suppression of the leaf net CO2 exchange during Phase II and Phase IV as well as the slightly lower efficiency of carbon fixation for the distinctive warm day/cool night temperature regimes confirms the involvement of photorespiration in CAM. A seasonal effect was reflected in the leaf net CO2 exchange rate with considerably higher rates in spring. In addition, sufficiently high levels of photosynthetically active radiation (PAR) in spring led to an efficiency of carbon fixation of 1.06-1.27% which is about twice as high than in autumn. As a result, only in the case where a net energy reduction between the temperature regimes compensates for the reduction in net CO2 uptake, warm day/cool night temperature regimes may be recommended as a practical sustainable alternative. and B. Pollet ... [et al.].
To explore the cause of difference in photosynthetic performance between different cultivars of crops, leaf net photosynt rate (PN) and photosystem 2 (PS2) photochemical efficiency (Fv/Fm), apparent quantum yield of carbon assimilation (φc), electron transport rate, photophosphorylation activity, etc. were measured in two soybean cultivars, Heinong 42 and Heinong 37. At pod setting and filling, significant differences in PN between them were observed. The former with a higher PN (from 7 to 38 %) had a significantly higher leaf thickness, leaf dry mass/area (LMA), chlorophyll content, soluble protein content, apparent quantum yield of electron transport through PS2 (φe), carboxylation efficiency (CE), and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity. The significantly higher PN of Heinong 42 is mainly due to its higher content and activity of RuBPC. and Hua Jiang, Da-Quan Xu.
Of the four tested sweet potato cultivars having different features in growth and yield, cv. Koganesengan (KOG) was sustainable in photosynthetic activity through young to aged leaves under drought. One of the causes for this phenomenon may be stomatal conductance (g s) of this cultivar that was relatively high in both aged and drought-imposed leaves. In these leaves the non-photochemical quenching (NPQ) was low and the quantum yield of photosystem 2 (Φe) was high, compared to those of the other cultivars. This helps to prevent excessive accumulation of chemical energy in leaves and a decrease in photoinhibition damage to the photosynthetic function, by which KOG sustains a relatively high photosynthetic activity under the drought and alleviates functional deterioration caused by leaf age. and Haimeirong, F. Kubota.