Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (PN), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with PN and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with PN measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650. and M. A. El-Sharkawy, Y. Lopez, L. M. Bernal.
Seedlings of green gram (Vigna radiata cv. ADT-1 and CO-5) were exposed to daily showers of simulated acidic rain (H2SO4 : HNO3 : HCl, 4 : 2 : 1, v/v) for 10 d. The effects were analysed after 5 and 10 showers, respectively. Rain of pH 2.5 inhibited seedling growth and biomass accumulation, though in other acidic levels the effects were mostly inconsistent. Both cultivars had high degree of surface wettability indicated by high leaf surface contact angles and water-holding capacity. Treated leaves were thinner with smaller mesophyll cells. Stomatal index and trichome density were lower in contrast to epidermal cell density and stomatal frequency which increased with increasing acidity. Decreases in chlorophyll (Chl), carotenoid (Car), and starch contents in cv. ADT-1 at pH 2.5 were observed after 5 showers, while in cv. CO-5 decreases were noted only after 10 showers. In contrast to total sugar levels, the protein content of cv. CO-5 was augmented significantly after simulated acidic rain (SAR) treatment. and G. Kumaravelu, M. P. Ramanujam.
Ultrastructural changes in chloroplasts of primary leaves of 15-d-old bean plants (Phaseolus vulgaris L. cv. Cheren Starozagorski) in response to a single stress (increasing water deficit, WD) as well as to combined stress (WD plus high temperature, WD+HT) were investigated under the possible protective or reparatory effects of the carbamide cytokinin 4-PU-30 [N-(2-chloro-4-pyridyl)-N-phenylurea] applied before or after the stress. Essential structural changes in chloroplast ultrastructure occurred mainly in plants that had experienced WD+HT: the thylakoids were swollen, the envelope was destroyed, and the spatial orientation of inner membrane system was not typical. Changed starch accumulation was also observed. 4-PU-30 protected chloroplast ultrastructure under WD+HT. and D. Stoyanova. I. Yordanov.
Three-year-old plants of Parthenium argentatum Gray cv. 11591 grown under natural photoperiod were exposed for 60 d to low night temperature (LNT) of 15 °C (daily from 18:00 to 06:00). Effects of the treatment on net photosynthetic rates (PN), rubber accumulation, and associated biochemical traits were examined. LNT initially reduced PN with a parallel decline in the activities of ribulose-1,5-bisphosphate carboxylase, fructose bisphosphatase, and sucrose phosphate synthase for 20-30 d. Later, LNT enhanced PN and the activities of photosynthetic enzymes. Associated with high PN in LNT-treated guayule plants was a two-fold increase in rubber content and rubber transferase activity per unit of protein. The initial decrease in PN in LNT-treated guayule was associated with low content of chlorophyll (a+b), large starch accumulation, and higher ratio of glucose-6-phosphate/fructose-6-phosphate. Photosystem 2 activity in isolated chloroplasts was initially decreased, but increased after 30 d. There was a significant increase in the leaf soluble protein content in LNT-treated plants. Hence the photosynthetic performance of plants grown at 15 °C night temperature for 50 d was superior to those grown under natural photoperiod in all parameters studied. The high photosynthetic capacity may contribute to superior rubber yields under LNT. and D. Sundar, A. Ramachandra Reddy.
A stem-girdling experiment was carried out on an evergreen conifer, the Korean pine (Pinus koraiensis Sieb. et Zucc.), in mid summer in Northeast China. A 50 % higher respiration rate at the upper part of the stem was observed 3 d after stem girdling, and a stable higher rate (1.2-2.8 times) one week later. However, no higher soluble sugar or starch contents were found in the upper bark of the girdled stems in measurements over three weeks. These findings indicate that most of the newly-formed photosynthates were consumed by the high respiratory activity; this is also implied by the strong correlation between the photosynthetic photon flux over the canopy (PPF) and respiration at the upper parts of girdled stems. Moreover, the maximum PPF and cumulative PPF one day before measurement (PPFmax-Y and CPPF-Y, respectively) were closely correlated with the respiratory difference between the upper and the lower parts, but no such correlation was found with the instantaneous PPF (PPF-I) and cumulative PPF on the current day from sunrise to measured time point (CPPF-C). This shows that photosynthates newly formed by canopy needles need at least one day for transportation in order to increase the stem respiration at tree breast height. and W. J. Wang ... [et al.]
In Ochroma pyramidale (Cav. ex Lam.) Urb., photon-saturated photosynthetic capacity (PNmax) was 13 μmol(CO2) m-2 s-1. Average stomatal conductance (gs) and water-use efficiency (WUE) were greater at high irradiance, about 260 mmol(H2O) m-2 s-1 and 2.15 g(C) kg-1(H2O), respectively. In the dark, gs values were about 30% of maximum gs. Leaf nutrient contents on a leaf area basis were 131, 15, 36, 21, and 12 mmol m-2 for N, P, K, Ca, and Mg, respectively. Ochroma also accumulated a greater amount of soluble saccharides than starch, 128 versus 90 g kg-1 (DM). The availability of N and Mg, but not P, Ca, or K, may limit photosynthetic rates of Ochroma in this site. and R. A. Marenco, J. F. de C. Gonçalves, G. Vieira.
In a growth chamber experiment, we determined net photosynthetic rate (PN) and leaf developmental characteristics of cultivars of a relatively small-, intermediate-, and a large-leaf genotype grown under irradiance of 450-500 µmol(photon) m-2 s-1 (HI), shade [140-160 µmol(photon) m-2 s-1] (LI), and after a shade-to-irradiation (LI >>HI) transfer. Differences in physiological responses of the genotypes were more pronounced in HI and LI>>HI plants than in LI plants. The small- and intermediate-leaf sizes had greater PN in the first measured leaf than the large-leaf type by 70 and 63 % in HI plants, and by 23 and 18 % in LI>>HI plants, respectively. Similar relationships were observed in the next developed leaf. The LI plants did not differ significantly in PN. Greater PN in the small- and intermediate-leaf size genotypes were not associated with greater total dry matter of the plant. Under irradiation, the large-leaf genotype accumulated more total nonstructural saccharides (TNS) and starch than the small- or intermediate-leaf size plants. TNS and starch concentrations in LI plants were about one-half those of HI and LI>>HI plants. These results should help to develop management practices that capitalize upon the competitive features of white clover in mixed-species swards. and D. P. Malinowski, D. P. Belesky, J. Fedders.
Wheat (T. durum cvs. HD 4502 and B 449, T. aestivum cvs. Kalyansona and Kundan) and sunflower (Helianthus annuus L. cv. Morden) were grown under atmospheric (360±10 cm3 m-3, AC) and elevated CO2 (650±50 cm3 m-3, EC) concentration in open top chambers for entire period of growth and development till maturity. Leaf net photosynthetic rate (PN) of EC-grown plants of wheat measured at EC was significantly decreased in comparison with AC-plants of wheat measured at EC. Sunflower, however, showed no significant depression in PN in EC-plants. There was a decrease in ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, its activation state and amount in EC-plants of wheat, whereas no significant decrease was observed in sunflower. The above different acclimation to EC in wheat and sunflower was related with saccharide constituents accumulated in the leaves. Under EC, sunflower accumulated in the leaves more starch, whereas wheat accumulated more sugars. and M. C. Ghildiyal, S. Rafique, P. Sharma-Natu.
Wheat (Triticum aestivum L. cv. HD 2329 and DL 1266-5) and sunflower (Helianthus annuus L. cv. MSFH 17 and MRSF 1754) plants were grown in field under atmospheric (360±10 cm3 m-3, AC) and elevated (650±50 cm3 m-3, EC) CO2 concentrations in open top chambers for entire period of growth and development till maturity. Net photosynthetic rate (P N) of wheat cvs. when compared at the same internal CO2 concentration (Ci), by generating PN/Ci curves, showed lower PN in EC plants than in AC ones. EC-grown wheat cultivars also showed a lesser response to irradiance than AC plants. In sunflower cultivars, PN/Ci curves and irradiance response curves were not significantly different in AC and EC plants. CO2 and irradiance responses of photosynthesis, therefore, further revealed a down-regulation of P N in wheat but not so in sunflower under long-term CO2 enrichment. Wheat cvs. accumulated in leaves mostly sugars, whereas sunflower accumulated mainly starch. This further strengthened the view that accumulation of excess assimilates in the leaves under EC as starch is not inhibitory to PN. and V. Pandurangam ... [et al.].
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine. and H. Cai ... [et al.].