CUBBITT En-Fr translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2014 (BLEU):
en->fr: 38.2
fr->en: 36.7
(Evaluated using multeval: https://github.com/jhclark/multeval)
CUBBITT En-Pl translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on newstest2020 (BLEU):
en->pl: 12.3
pl->en: 20.0
(Evaluated using multeval: https://github.com/jhclark/multeval)
The Czech translation of SQuAD 2.0 and SQuAD 1.1 datasets contains automatically translated texts, questions and answers from the training set and the development set of the respective datasets.
The test set is missing, because it is not publicly available.
The data is released under the CC BY-NC-SA 4.0 license.
If you use the dataset, please cite the following paper (the exact format was not available during the submission of the dataset): Kateřina Macková and Straka Milan: Reading Comprehension in Czech via Machine Translation and Cross-lingual Transfer, presented at TSD 2020, Brno, Czech Republic, September 8-11 2020.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3105). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3226). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3424). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
Deep Universal Dependencies is a collection of treebanks derived semi-automatically from Universal Dependencies (http://hdl.handle.net/11234/1-3687). It contains additional deep-syntactic and semantic annotations. Version of Deep UD corresponds to the version of UD it is based on. Note however that some UD treebanks have been omitted from Deep UD.
This machine translation test set contains 2223 Czech sentences collected within the FAUST project (https://ufal.mff.cuni.cz/grants/faust, http://hdl.handle.net/11234/1-3308).
Each original (noisy) sentence was normalized (clean1 and clean2) and translated to English independently by two translators.
Grammar Error Correction Corpus for Czech (GECCC) consists of 83 058 sentences and covers four diverse domains, including essays written by native students, informal website texts, essays written by Romani ethnic minority children and teenagers and essays written by nonnative speakers. All domains are professionally annotated for GEC errors in a unified manner, and errors were automatically categorized with a Czech-specific version of ERRANT released at https://github.com/ufal/errant_czech
The dataset was introduced in the paper Czech Grammar Error Correction with a Large and Diverse Corpus that was accepted to TACL. Until published in TACL, see the arXiv version: https://arxiv.org/pdf/2201.05590.pdf
Grammar Error Correction Corpus for Czech (GECCC) consists of 83 058 sentences and covers four diverse domains, including essays written by native students, informal website texts, essays written by Romani ethnic minority children and teenagers and essays written by nonnative speakers. All domains are professionally annotated for GEC errors in a unified manner, and errors were automatically categorized with a Czech-specific version of ERRANT released at https://github.com/ufal/errant_czech
The dataset was introduced in the paper Czech Grammar Error Correction with a Large and Diverse Corpus that was accepted to TACL. Until published in TACL, see the arXiv version: https://arxiv.org/pdf/2201.05590.pdf
This version fixes double annotation errors in train and dev M2 files, and also contains more metadata information.