Data
----
Hindi Visual Genome 1.0, a multimodal dataset consisting of text and images suitable for English-to-Hindi multimodal machine translation task and multimodal research. We have selected short English segments (captions) from Visual Genome along with associated images and automatically translated them to Hindi with manual post-editing, taking the associated images into account. The training set contains 29K segments. Further 1K and 1.6K segments are provided in a development and test sets, respectively, which follow the same (random) sampling from the original Hindi Visual Genome.
Additionally, a challenge test set of 1400 segments will be released for the WAT2019 multi-modal task. This challenge test set was created by searching for (particularly) ambiguous English words based on the embedding similarity and manually selecting those where the image helps to resolve the ambiguity.
Dataset Formats
--------------
The multimodal dataset contains both text and images.
The text parts of the dataset (train and test sets) are in simple tab-delimited plain text files.
All the text files have seven columns as follows:
Column1 - image_id
Column2 - X
Column3 - Y
Column4 - Width
Column5 - Height
Column6 - English Text
Column7 - Hindi Text
The image part contains the full images with the corresponding image_id as the file name. The X, Y, Width and Height columns indicate the rectangular region in the image described by the caption.
Data Statistics
----------------
The statistics of the current release is given below.
Parallel Corpus Statistics
---------------------------
Dataset Segments English Words Hindi Words
------- --------- ---------------- -------------
Train 28932 143178 136722
Dev 998 4922 4695
Test 1595 7852 7535
Challenge Test 1400 8185 8665 (Released separately)
------- --------- ---------------- -------------
Total 32925 164137 157617
The word counts are approximate, prior to tokenization.
Citation
--------
If you use this corpus, please cite the following paper:
@article{hindi-visual-genome:2019,
title={{Hindi Visual Genome: A Dataset for Multimodal English-to-Hindi Machine Translation}},
author={Parida, Shantipriya and Bojar, Ond{\v{r}}ej and Dash, Satya Ranjan},
journal={Computaci{\'o}n y Sistemas},
note={In print. Presented at CICLing 2019, La Rochelle, France},
year={2019},
}
This package contains data sets for development and testing of machine translation of medical queries between Czech, English, French, German, Hungarian, Polish, Spanish ans Swedish. The queries come from general public and medical experts. This is version 2.0 extending the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This package contains data sets for development (Section dev) and testing (Section test) of machine translation of sentences from summaries of medical articles between Czech, English, French, German, Hungarian, Polish, Spanish
and Swedish. Version 2.0 extends the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This data set contains four types of manual annotation of translation quality, focusing on the comparison of human and machine translation quality (aka human-parity). The machine translation system used is English-Czech CUNI Transformer (CUBBITT). The annotations distinguish adequacy, fluency and overall quality. One of the types is Translation Turing test - detecting whether the annotators can distinguish human from machine translation.
All the sentences are taken from the English-Czech test set newstest2018 (WMT2018 News translation shared task www.statmt.org/wmt18/translation-task.html), but only from the half with originally English sentences translated to Czech by a professional agency.
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
Data
----
We have collected English-Odia parallel and monolingual data from the
available public websites for NLP research in Odia.
The parallel corpus consists of English-Odia parallel Bible, Odia
digital library, and Odisha Goverment websites. It covers bible,
literature, goverment of Odisha and its policies. We have processed the
raw data collected from the websites, performed alignments (a mix of
manual and automatic alignments) and release the corpus in a form ready
for various NLP tasks.
The Odia monolingual data consists of Odia-Wikipedia and Odia e-magazine
websites. Because the major portion of data is extracted from
Odia-Wikipedia, it covers all kinds of domains. The e-magazines data
mostly cover the literature domain. We have preprocessed the monolingual
data including de-duplication, text normalization, and sentence
segmentation to make it ready for various NLP tasks.
Corpus Formats
--------------
Both corpora are in simple tab-delimited plain text files.
The parallel corpus files have three columns:
- the original book/source of the sentence pair
- the English sentence
- the corresponding Odia sentence
The monolingual corpus has a varying number of columns:
- each line corresponds to one *paragraph* (or related unit) of the
original source
- each tab-delimited unit corresponds to one *sentence* in the paragraph
Data Statistics
----------------
The statistics of the current release is given below.
Parallel Corpus Statistics
---------------------------
Dataset Sentences #English tokens #Odia tokens
------- --------- ---------------- -------------
Train 27136 706567 604147
Dev 948 21912 19513
Test 1262 28488 24365
------- --------- ---------------- -------------
Total 29346 756967 648025
Domain Level Statistics
------------------------
Domain Sentences #English tokens #Odia tokens
------------------ --------- ---------------- -------------
Bible 29069 756861 640157
Literature 424 7977 6611
Goverment policies 204 1411 1257
------------------ --------- ---------------- -------------
Total 29697 766249 648025
Monolingual Corpus Statistics
-----------------------------
Paragraphs Sentences #Odia tokens
---------- --------- ------------
71698 221546 2641308
Domain Level Statistics
-----------------------
Domain Paragraphs Sentences #Odia tokens
-------------- -------------- --------- -------------
General (wiki) 30468 (42.49%) 102085 1320367
Literature 41230 (57.50%) 119461 1320941
-------------- -------------- --------- -------------
Total 71698 221546 2641308
Citation
--------
If you use this corpus, please cite it directly (see above), but please cite also the following paper:
Title: OdiEnCorp: Odia-English and Odia-Only Corpus for Machine Translation
Author: Shantipriya Parida, Ondrej Bojar, and Satya Ranjan Dash
Proceedings of the Third International Conference on Smart Computing & Informatics (SCI) 2018
Series: Smart Innovation, Systems and Technologies (SIST)
Publisher: Springer Singapore
Prague Czech-English Dependency Treebank - Russian translation (PCEDT-R) is a project of translating a subset of Prague Czech-English Dependency Treebank 2.0 (PCEDT 2.0) to Russian and linguistically annotating the Russian translations with emphasis on coreference and cross-lingual alignment of coreferential expressions. Cross-lingual comparison of coreference means is currently the purpose that drives development of this corpus.
The current version 0.5 is a preliminary version, which contains (+ denotes new features):
* complete PCEDT 2.0 documents "wsj_1900"-"wsj_1949"
* Czech-English word alignment of coreferential expressions annotated manually mainly on the t-layer
+ Russian translations of the original English sentences
+ automatic tokenization, part-of-speech tagging and morphological analysis for Russian
+ automatic word alignment between all Czech and Russian words
+ manual alignment between Russian and the other two languages on possessive pronouns
The Prague Czech-English Dependency Treebank 2.0 Coref (PCEDT 2.0 Coref) is a parallel treebank building upon the original PCEDT 2.0 release and enriching it with the extended manual annotation of coreference, as well as with an improved automatic annotation of the coreferential expression alignment.
The SynSemClass synonym verb lexicon is a result of a project investigating semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English language resources, i.e., relating verb meanings with respect to contextually-based verb synonymy. The lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (http://verbs.colorado.edu/verbnet/index.html), PropBank (http://verbs.colorado.edu/%7Empalmer/projects/ace.html), Ontonotes (http://verbs.colorado.edu/html_groupings/), and English Wordnet (https://wordnet.princeton.edu/). Part of the dataset are files reflecting interannotator agreement.
The SynSemClass 3.5 synonym verb lexicon investigates semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English and German-English language resources, i.e., relates verb meanings with respect to contextually-based verb synonymy.
The Czech lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), Vallex (http://hdl.handle.net/11234/1-3524), and CzEngVallex (http://hdl.handle.net/11234/1-1512).
The English lexicon entries are linked to EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html), PropBank (http://propbank.github.io/), Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and English Wordnet (https://wordnet.princeton.edu/).
The German lexicon entries are linked to Woxikon (https://synonyme.woxikon.de), E-VALBU (https://grammis.ids-mannheim.de/verbvalenz), and GUP (http://alanakbik.github.io/multilingual.html; https://github.com/UniversalDependencies/UD_German-GSD).
Ministerstvo školství, mládeže a tělovýchovy České republiky@@LM2015071@@LINDAT/CLARIN: Institut pro analýzu, zpracování a distribuci lingvistických dat@@nationalFunds@@✖[remove]36