he surface proteins of trophic (vacuolar and ameboid forms) and cyst forms of two axcnic Blastocystis hominis Brumpt, 1912 isolates were studied. The surface proteins of both forms were biotin-labeled and the soluble proteins from unlabeied and biolin-labcled cells were clcctrophoresed in 10% SDS-polyacrylamide gels under reducing conditions. The clcctrophoresed proteins from biolinylated cells were transferred to nitrocellulose membranes and the avidin-peroxidase-labeled complex was used to identify the surface proteins. In trophic forms, 26 of the 38 soluble proteins, with MW ranging between 30 and >200 kDa, were identified as surface proteins. In cyst forms, 15 of Ihe 29 soluble proteins, with MW ranging between 30 and 193 kDa, were considered as located on the surface of cysts. The comparative analysis of surface protein profiles of both forms showed the presence of a common pattern, composed of 13 bands, and the characteristic proteins of trophic (36, 44, 46, 51, 70, 74, 76, 92, 98, 101, 166, 176 and >200 kDa) and cyst forms (42 and 193 kDa).
V době rozvoje atraktivních fyzikálních disciplín, jako jsou například teorie strun, studium nanostruktur či moderní astrofyzika na jedné straně, a současně rostoucí neobliby fyziky u žáků základních škol a gymnazistů na straně druhé, se problémy newtonovské mechaniky mohou zdát zcela neúčinným prostředkem pro upoutání zájmu mládeže o fyziku. Cílem tohoto článku je uvedené tvrzení pomocí několika jednoduchých gymnaziálních úloh oslabit a pokusit se ukázat, že i standardní učebnicové problémy mohou být zajímavé a inspirativní. Dokladem toho, že klasická newtonovská mechanika může být i v současnosti zdrojem poučení a disciplínou jako stvořenou pro „broušení fyzikálního rozumu“, jsou studie [1]-[5] profesora Černohorského zaměřené na problematiku Newtonových zákonů., Jana Musilová, Lenka Czudková., and Obsahuje seznam literatury
In this article basic concepts concerning "uncertainty" and their related topics are presented, explained using examples and discussed. Namely, the concept of "true value" underwent a significant evolution from the so called "Error approach" to the "Uncertainty approach". The concept of quantity value itself is consistent with the concept of uncertainty, rather than "exact value" presented by one exact real number. A particular schism with previous Czech terminology has been solved and some general rules for terminology are stated. This paper was supported by the Czech Ministry of Education, Grand agency INGO II, project LG13026. and Jan Obrdržálek.