We define "optimal reference translation" as a translation thought to be the best possible that can be achieved by a team of human translators. Optimal reference translations can be used in assessments of excellent machine translations.
We selected 50 documents (online news articles, with 579 paragraphs in total) from the 130 English documents included in the WMT2020 news test (http://www.statmt.org/wmt20/) with the aim to preserve diversity (style, genre etc.) of the selection. In addition to the official Czech reference translation provided by the WMT organizers (P1), we hired two additional translators (P2 and P3, native Czech speakers) via a professional translation agency, resulting in three independent translations. The main contribution of this dataset are two additional translations (i.e. optimal reference translations N1 and N2), done jointly by two translators-cum-theoreticians with an extreme care for various aspects of translation quality, while taking into account the translations P1-P3. We publish also internal comments (in Czech) for some of the segments.
Translation N1 should be closer to the English original (with regards to the meaning and linguistic structure) and female surnames use the Czech feminine suffix (e.g. "Mai" is translated as "Maiová"). Translation N2 is more free, trying to be more creative, idiomatic and entertaining for the readers and following the typical style used in Czech media, while still preserving the rules of functional equivalence. Translation N2 is missing for the segments where it was not deemed necessary to provide two alternative translations. For applications/analyses needing translation of all segments, this should be interpreted as if N2 is the same as N1 for a given segment.
We provide the dataset in two formats: OpenDocument spreadsheet (odt) and plain text (one file for each translation and the English original). Some words were highlighted using different colors during the creation of optimal reference translations; this highlighting and comments are present only in the odt format (some comments refer to row numbers in the odt file). Documents are separated by empty lines and each document starts with a special line containing the document name (e.g. "# upi.205735"), which allows alignment with the original WMT2020 news test. For the segments where N2 translations are missing in the odt format, the respective N1 segments are used instead in the plain-text format.
This corpus contains annotations of translation quality from English to Czech in seven categories on both segment- and document-level. There are 20 documents in total, each with 4 translations (evaluated by each annotator in paralel) of 8 segments (can be longer than one sentence). Apart from the evaluation, the annotators also proposed their own, improved versions of the translations.
There were 11 annotators in total, on expertise levels ranging from non-experts to professional translators.
The ParCzech 3.0 corpus is the third version of ParCzech consisting of stenographic protocols that record the Chamber of Deputies’ meetings held in the 7th term (2013-2017) and the current 8th term (2017-Mar 2021). The protocols are provided in their original HTML format, Parla-CLARIN TEI format, and the format suitable for Automatic Speech Recognition. The corpus is automatically enriched with the morphological, syntactic, and named-entity annotations using the procedures UDPipe 2 and NameTag 2. The audio files are aligned with the texts in the annotated TEI files.
Statistical component of Chimera, a state-of-the-art MT system. and Project DF12P01OVV022 of the Ministry of Culture of the Czech Republic (NAKI -- Amalach).
The dataset used for the Ptakopět experiment on outbound machine translation. It consists of screenshots of web forms with user queries entered. The queries are available also in a text form. The dataset comprises two language versions: English and Czech. Whereas the English version has been fully post-processed (screenshots cropped, queries within the screenshots highlighted, dataset split based on its quality etc.), the Czech version is raw as it was collected by the annotators.
The THEaiTRobot 1.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The tool is based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
We encountered numerous problems when generating the script in this way. We managed to tackle some of the problems with various adjustments, but some of them remain to be solved in a future version.
THEaiTRobot 1.0 was used to generate the first THEaiTRE play, "AI: Když robot píše hru" ("AI: When a robot writes a play").
The THEaiTRobot 2.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The previous version of the tool (http://hdl.handle.net/11234/1-3507) was based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
The current version also uses vanilla GPT-2 by default, but can also instead use a GPT-2 medium model fine-tuned on theatre play scripts (as well as film and TV series scripts). Apart from the basic "flat" generation using a theatrical starting prompt and the script model, the tool also features a second, hierarchical variant, where in the first step, a play synopsis is generated from its title using a synopsis model (GPT-2 medium fine-tuned on synopses of theatre plays, as well as film, TV series and book synopses). The synopsis is then used as input for the second stage, which uses the script model.
The choice of models to use is done by setting the MODEL variable in start_server.sh and start_syn_server.sh
THEaiTRobot 2.0 was used to generate the second THEaiTRE play, "Permeation/Prostoupení".
AMALACH project component TMODS:ENG-CZE; machine translation of queries from Czech to English. This archive contains models for the Moses decoder (binarized, pruned to allow for real-time translation) and configuration files for the MTMonkey toolkit. The aim of this package is to provide a full service for Czech->English translation which can be easily utilized as a component in a larger software solution. (The required tools are freely available and an installation guide is included in the package.)
The translation models were trained on CzEng 1.0 corpus and Europarl. Monolingual data for LM estimation additionally contains WMT news crawls until 2013.