We provide the Vietnamese version of the multi-lingual test set from WMT 2013 [1] competition. The Vietnamese version was manually translated from English. For completeness, this record contains the 3000 sentences in all the WMT 2013 original languages (Czech, English, French, German, Russian and Spanish), extended with our Vietnamese version. Test set is used in [2] to evaluate translation between Czech, English and Vietnamese.
References
1. http://www.statmt.org/wmt13/evaluation-task.html
2. Duc Tam Hoang and Ondřej Bojar, The Prague Bulletin of Mathematical Linguistics. Volume 104, Issue 1, Pages 75--86, ISSN 1804-0462. 9/2015
Testing set from WMT 2011 [1] competition, manually translated from Czech and English into Slovak. Test set contains 3003 sentences in Czech, Slovak and English. Test set is described in [2].
References:
[1] http://www.statmt.org/wmt11/evaluation-task.html
[2] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and The work on this project was supported by the grant EuroMatrixPlus (FP7-ICT-
2007-3-231720 of the EU and 7E09003 of the Czech Republic)
The item contains models to tune for the WMT16 Tuning shared task for Czech-to-English.
CzEng 1.6pre (http://ufal.mff.cuni.cz/czeng/czeng16pre) corpus is used for the training of the translation models. The data is tokenized (using Moses tokenizer), lowercased and sentences longer than 60 words and shorter than 4 words are removed before training. Alignment is done using fast_align (https://github.com/clab/fast_align) and the standard Moses pipeline is used for training.
Two 5-gram language models are trained using KenLM: one only using the CzEng English data and the other is trained using all available English mono data for WMT except Common Crawl.
Also included are two lexicalized bidirectional reordering models, word based and hierarchical, with msd conditioned on both source and target of processed CzEng.
This item contains models to tune for the WMT16 Tuning shared task for English-to-Czech.
CzEng 1.6pre (http://ufal.mff.cuni.cz/czeng/czeng16pre) corpus is used for the training of the translation models. The data is tokenized (using Moses tokenizer), lowercased and sentences longer than 60 words and shorter than 4 words are removed before training. Alignment is done using fast_align (https://github.com/clab/fast_align) and the standard Moses pipeline is used for training.
Two 5-gram language models are trained using KenLM: one only using the CzEng Czech data and the other is trained using all available Czech mono data for WMT except Common Crawl.
Also included are two lexicalized bidirectional reordering models, word based and hierarchical, with msd conditioned on both source and target of processed CzEng.