CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.0 consists of 17 datasets for 11 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 13 datasets for 10 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 1 for Hungarian, 1 for Lithuanian, 1 for Polish, 1 for Russian, and 1 for Spanish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Version 1.0 consists of the same corpora and languages as the previous version 0.2; however, the English GUM dataset has been updated to a newer and larger version, and in the Czech/English PCEDT dataset, the train-dev-test split has been changed to be compatible with OntoNotes. Nevertheless, the main change is in the file format (the MISC attributes have new form and interpretation).
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.1 consists of 21 datasets for 13 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 17 datasets for 12 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 2 for Hungarian, 1 for Lithuanian, 2 for Norwegian, 1 for Polish, 1 for Russian, 1 for Spanish, and 1 for Turkish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Compared to the previous version 1.0, the version 1.1 comprises new languages and corpora, namely Hungarian-KorKor, Norwegian-BokmaalNARC, Norwegian-NynorskNARC, and Turkish-ITCC. In addition, the English GUM dataset has been updated to a newer and larger version, and the conversion pipelines for most datasets have been refined (a list of all changes in each dataset can be found in the corresponding README file).
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.2 consists of 25 datasets for 16 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 21 datasets for 15 languages (1 dataset for Ancient Greek, 1 for Ancient Hebrew, 1 for Catalan, 2 for Czech, 3 for English, 1 for French, 2 for German, 2 for Hungarian, 1 for Lithuanian, 2 for Norwegian, 1 for Old Church Slavonic, 1 for Polish, 1 for Russian, 1 for Spanish, and 1 for Turkish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource, too. Compared to the previous version 1.1, the version 1.2 comprises new languages and corpora, namely Ancient_Greek-PROIEL, Ancient_Hebrew-PTNK, English-LitBank, and Old_Church_Slavonic-PROIEL. In addition, English-GUM and Turkish-ITCC have been updated to newer versions, conversion of zeros in Polish-PCC has been improved, and the conversion pipelines for multiple other datasets have been refined (a list of all changes in each dataset can be found in the corresponding README file).
Titles of courses possibly relevant to the Digital Humanities for 2017-2018, manually gathered from course catalogues of most Czech state colleges, including the names of the teachers, department and school names, and the school-unique course IDs. All this information was publicly available in the individual course catalogues accessed from the official websites of the individual colleges.
Syntactic (including deep-syntactic - tectogrammatical) annotation of user-generated noisy sentences. The annotation was made on Czech-English and English-Czech Faust Dev/Test sets.
The English data includes manual annotations of English reference translations of Czech source texts. This texts were translated independently by two translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. Both the reference translations were annotated, which means 2000 annotated segments in total.
The Czech data includes manual annotations of Czech reference translations of English source texts. This texts were translated independently by three translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. All three reference translations were annotated, which means 3000 annotated segments in total.
Faust is part of PDT-C 1.0 (http://hdl.handle.net/11234/1-3185).
This machine translation test set contains 2223 Czech sentences collected within the FAUST project (https://ufal.mff.cuni.cz/grants/faust, http://hdl.handle.net/11234/1-3308).
Each original (noisy) sentence was normalized (clean1 and clean2) and translated to English independently by two translators.
KUK 0.0 is a pilot version of a corpus of Czech legal and administrative texts designated as data for manual and automatic assessment of accessibility (comprehensibility or clarity) of Czech legal texts.
LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
LiFR-Law is a corpus of Czech legal and administrative texts with measured reading comprehension and a subjective expert annotation of diverse textual properties based on the Hamburg Comprehensibility Concept (Langer, Schulz von Thun, Tausch, 1974). It has been built as a pilot data set to explore the Linguistic Factors of Readability (hence the LiFR acronym) in Czech administrative and legal texts, modeling their correlation with actually observed reading comprehension. The corpus is comprised of 18 documents in total; that is, six different texts from the legal/administration domain, each in three versions: the original and two paraphrases. Each such document triple shares one reading-comprehension test administered to at least thirty readers of random gender, educational background, and age. The data set also captures basic demographic information about each reader, their familiarity with the topic, and their subjective assessment of the stylistic properties of the given document, roughly corresponding to the key text properties identified by the Hamburg Comprehensibility Concept.
Changes to the previous version and helpful comments
• File names of the comprehension test results (self-explanatory)
• Corrected one erroneous automatic evaluation rule in the multiple-choice evaluation (zahradnici_3,
TRUE and FALSE had been swapped)
• Evaluation protocols for both question types added into Folder lifr_formr_study_design
• Data has been cleaned: empty responses to multiple-choice questions were re-inserted. Now, all surveys
are considered complete that have reader’s subjective text evaluation complete (these were placed at
the very end of each survey).
• Only complete surveys (all 7 content questions answered) are represented. We dropped the replies of
six users who did not complete their surveys.
• A few missing responses to open questions have been detected and re-inserted.
• The demographic data contain all respondents who filled in the informed consent and the demographic
details, with respondents who did not complete any test survey (but provided their demographic
details) in a separate file. All other data have been cleaned to contain only responses by the regular
respondents (at least one completed survey).
Corpus of Czech educational texts for readability studies, with paraphrases, measured reading comprehension, and a multi-annotator subjective rating of selected text features based on the Hamburg Comprehensibility Concept