CzEng 1.0 is the fourth release of a sentence-parallel Czech-English corpus compiled at the Institute of Formal and Applied Linguistics (ÚFAL) freely available for non-commercial research purposes.
CzEng 1.0 contains 15 million parallel sentences (233 million English and 206 million Czech tokens) from seven different types of sources automatically annotated at surface and deep (a- and t-) layers of syntactic representation. and EuroMatrix Plus (FP7-ICT-2007-3-231720 of the EU and 7E09003+7E11051 of the Ministry of Education, Youth and Sports of the Czech Republic),
Faust (FP7-ICT-2009-4-247762 of the EU and 7E11041 of the Ministry of Education, Youth and Sports of the Czech Republic),
GAČR P406/10/P259,
GAUK 116310,
GAUK 4226/2011
Czech-Slovak parallel corpus consisting of several freely available corpora (Acquis [1], Europarl [2], Official Journal of the European Union [3] and part of OPUS corpus [4] – EMEA, EUConst, KDE4 and PHP) and downloaded website of European Commission [5]. Corpus is published in both in plaintext format and with an automatic morphological annotation.
References:
[1] http://langtech.jrc.it/JRC-Acquis.html/
[2] http://www.statmt.org/europarl/
[3] http://apertium.eu/data
[4] http://opus.lingfil.uu.se/
[5] http://ec.europa.eu/ and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the Czech Republic)
English-Slovak parallel corpus consisting of several freely available corpora (Acquis [1], Europarl [2], Official Journal of the European Union [3] and part of OPUS corpus [4] – EMEA, EUConst, KDE4 and PHP) and downloaded website of European Commission [5]. Corpus is published in both in plaintext format and with an automatic morphological annotation.
References:
[1] http://langtech.jrc.it/JRC-Acquis.html/
[2] http://www.statmt.org/europarl/
[3] http://apertium.eu/data
[4] http://opus.lingfil.uu.se/
[5] http://ec.europa.eu/ and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and 7E09003 of the Czech Republic)
Manual classification of errors of Czech-Slovak translation according to the classification introduced by Vilar et al. [1]. First 50 sentences from WMT 2010 test set were translated by 5 MT systems (Česílko, Česílko2, Google Translate and two Moses setups) and MT errors were manually marked and classified. Classification was applied in MT systems comparison [3]. Reference translation is included.
References:
[1] David Vilar, Jia Xu, Luis Fernando D’Haro and Hermann Ney. Error Analysis of Machine Translation Output. In International Conference on Language Resources and Evaluation, pages 697-702. Genoa, Italy, May 2006.
[2] http://matrix.statmt.org/test_sets/list
[3] Ondřej Bojar, Petra Galuščáková, and Miroslav Týnovský. Evaluating Quality of Machine Translation from Czech to Slovak. In Markéta Lopatková, editor, Information Technologies - Applications and Theory, pages 3-9, September 2011 and This work has been supported by the grants Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Manual classification of errors of English-Slovak translation according to the classification introduced by Vilar et al. [1]. 50 sentences randomly selected from WMT 2011 test set [2] were translated by 3 MT systems described in [3] and MT errors were manually marked and classified. Reference translation is included.
References:
[1] David Vilar, Jia Xu, Luis Fernando D’Haro and Hermann Ney. Error Analysis of Machine Translation Output. In International Conference on Language Resources and Evaluation, pages 697-702. Genoa, Italy, May 2006.
[2] http://www.statmt.org/wmt11/evaluation-task.html
[3] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Manually ranked outputs of Czech-Slovak translations. Three annotators manually ranked outputs of five MT systems (Česílko, Česílko2, Google Translate and two Moses setups) on three data sets (100 sentences randomly selected from books, 100 sentences randomly selected from Acquis corpus and 50 first sentences from WMT 2010 test set). Ranking was applied in MT systems comparison in [1].
References:
[1] Ondřej Bojar, Petra Galuščáková, and Miroslav Týnovský. Evaluating Quality of Machine Translation from Czech to Slovak. In Markéta Lopatková, editor, Information Technologies - Applications and Theory, pages 3-9, September 2011 and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Testing set from WMT 2011 [1] competition, manually translated from Czech and English into Slovak. Test set contains 3003 sentences in Czech, Slovak and English. Test set is described in [2].
References:
[1] http://www.statmt.org/wmt11/evaluation-task.html
[2] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and The work on this project was supported by the grant EuroMatrixPlus (FP7-ICT-
2007-3-231720 of the EU and 7E09003 of the Czech Republic)