CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.0 consists of 17 datasets for 11 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 13 datasets for 10 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 1 for Hungarian, 1 for Lithuanian, 1 for Polish, 1 for Russian, and 1 for Spanish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Version 1.0 consists of the same corpora and languages as the previous version 0.2; however, the English GUM dataset has been updated to a newer and larger version, and in the Czech/English PCEDT dataset, the train-dev-test split has been changed to be compatible with OntoNotes. Nevertheless, the main change is in the file format (the MISC attributes have new form and interpretation).
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.1 consists of 21 datasets for 13 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 17 datasets for 12 languages (1 dataset for Catalan, 2 for Czech, 2 for English, 1 for French, 2 for German, 2 for Hungarian, 1 for Lithuanian, 2 for Norwegian, 1 for Polish, 1 for Russian, 1 for Spanish, and 1 for Turkish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource too. Compared to the previous version 1.0, the version 1.1 comprises new languages and corpora, namely Hungarian-KorKor, Norwegian-BokmaalNARC, Norwegian-NynorskNARC, and Turkish-ITCC. In addition, the English GUM dataset has been updated to a newer and larger version, and the conversion pipelines for most datasets have been refined (a list of all changes in each dataset can be found in the corresponding README file).
CorefUD is a collection of previously existing datasets annotated with coreference, which we converted into a common annotation scheme. In total, CorefUD in its current version 1.2 consists of 25 datasets for 16 languages. The datasets are enriched with automatic morphological and syntactic annotations that are fully compliant with the standards of the Universal Dependencies project. All the datasets are stored in the CoNLL-U format, with coreference- and bridging-specific information captured by attribute-value pairs located in the MISC column. The collection is divided into a public edition and a non-public (ÚFAL-internal) edition. The publicly available edition is distributed via LINDAT-CLARIAH-CZ and contains 21 datasets for 15 languages (1 dataset for Ancient Greek, 1 for Ancient Hebrew, 1 for Catalan, 2 for Czech, 3 for English, 1 for French, 2 for German, 2 for Hungarian, 1 for Lithuanian, 2 for Norwegian, 1 for Old Church Slavonic, 1 for Polish, 1 for Russian, 1 for Spanish, and 1 for Turkish), excluding the test data. The non-public edition is available internally to ÚFAL members and contains additional 4 datasets for 2 languages (1 dataset for Dutch, and 3 for English), which we are not allowed to distribute due to their original license limitations. It also contains the test data portions for all datasets. When using any of the harmonized datasets, please get acquainted with its license (placed in the same directory as the data) and cite the original data resource, too. Compared to the previous version 1.1, the version 1.2 comprises new languages and corpora, namely Ancient_Greek-PROIEL, Ancient_Hebrew-PTNK, English-LitBank, and Old_Church_Slavonic-PROIEL. In addition, English-GUM and Turkish-ITCC have been updated to newer versions, conversion of zeros in Polish-PCC has been improved, and the conversion pipelines for multiple other datasets have been refined (a list of all changes in each dataset can be found in the corresponding README file).
Corpus of texts in 12 languages. For each language, we provide one training, one development and one testing set acquired from Wikipedia articles. Moreover, each language dataset contains (substantially larger) training set collected from (general) Web texts. All sets, except for Wikipedia and Web training sets that can contain similar sentences, are disjoint. Data are segmented into sentences which are further word tokenized.
All data in the corpus contain diacritics. To strip diacritics from them, use Python script diacritization_stripping.py contained within attached stripping_diacritics.zip. This script has two modes. We generally recommend using method called uninames, which for some languages behaves better.
The code for training recurrent neural-network based model for diacritics restoration is located at https://github.com/arahusky/diacritics_restoration.
This package contains data sets for development and testing of machine translation of medical queries between Czech, English, French, German, Hungarian, Polish, Spanish ans Swedish. The queries come from general public and medical experts. This is version 2.0 extending the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This package contains data sets for development (Section dev) and testing (Section test) of machine translation of sentences from summaries of medical articles between Czech, English, French, German, Hungarian, Polish, Spanish
and Swedish. Version 2.0 extends the previous version by adding Hungarian, Polish, Spanish, and Swedish translations.
This multilingual resource contains corpora for 14 languages, gathered at the occasion of the 1.2 edition of the PARSEME Shared Task on semi-supervised Identification of Verbal MWEs (2020). These corpora were meant to serve as additional "raw" corpora, to help discovering unseen verbal MWEs.
The corpora are provided in CONLL-U (https://universaldependencies.org/format.html) format. They contain morphosyntactic annotations (parts of speech, lemmas, morphological features, and syntactic dependencies). Depending on the language, the information comes from treebanks (mostly Universal Dependencies v2.x) or from automatic parsers trained on UD v2.x treebanks (e.g., UDPipe).
VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do).
For the 1.2 shared task edition, the data covers 14 languages, for which VMWEs were annotated according to the universal guidelines. The corpora are provided in the cupt format, inspired by the CONLL-U format.
Morphological and syntactic information – not necessarily using UD tagsets – including parts of speech, lemmas, morphological features and/or syntactic dependencies are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe).
This item contains training, development and test data, as well as the evaluation tools used in the PARSEME Shared Task 1.2 (2020). The annotation guidelines are available online: http://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.2
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).