A slightly modified version of the Czech Wordnet. This is the version used to annotate "The Lexico-Semantic Annotation of PDT using Czech WordNet": http://hdl.handle.net/11858/00-097C-0000-0001-487A-4
The Czech WordNet was developed by the Centre of Natural Language Processing at the Faculty of Informatics, Masaryk University, Czech Republic.
The Czech WordNet captures nouns, verbs, adjectives, and partly adverbs, and contains 23,094 word senses (synsets). 203 of these were created or modified by UFAL during correction of annotations. This version of WordNet was used to annotate word senses in PDT: http://hdl.handle.net/11858/00-097C-0000-0001-487A-4
A more recent version of Czech WordNet is distributed by ELRA: http://catalog.elra.info/product_info.php?products_id=1089 and 1ET201120505, LM2010013
The CzEngClass synonym verb lexicon is a result of a project investigating semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English language resources, i.e., relating verb meanings with respect to contextually-based verb synonymy. The lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (http://verbs.colorado.edu/verbnet/index.html), PropBank (http://verbs.colorado.edu/%7Empalmer/projects/ace.html), Ontonotes (http://verbs.colorado.edu/html_groupings/), and Czech (http://hdl.handle.net/11858/00-097C-0000-0001-4880-3) and English Wordnets (https://wordnet.princeton.edu/). Part of the dataset is a file reflecting annotators choices for assignment of verbs to classes.
The CzEngClass synonym verb lexicon is a result of a project investigating semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English language resources, i.e., relating verb meanings with respect to contextually-based verb synonymy. The lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (http://verbs.colorado.edu/verbnet/index.html), PropBank (http://verbs.colorado.edu/%7Empalmer/projects/ace.html), Ontonotes (http://verbs.colorado.edu/html_groupings/), and Czech (http://hdl.handle.net/11858/00-097C-0000-0001-4880-3) and English Wordnets (https://wordnet.princeton.edu/). Part of the dataset are files reflecting annotators choices and agreement for assignment of verbs to classes.
The CzEngClass synonym verb lexicon is a result of a project investigating semantic ‘equivalence’ of verb senses and their valency behavior in parallel Czech-English language resources, i.e., relating verb meanings with respect to contextually-based verb synonymy. The lexicon entries are linked to PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F), EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2), CzEngVallex (http://hdl.handle.net/11234/1-1512), FrameNet (https://framenet.icsi.berkeley.edu/fndrupal/), VerbNet (http://verbs.colorado.edu/verbnet/index.html), PropBank (http://verbs.colorado.edu/%7Empalmer/projects/ace.html), Ontonotes (http://verbs.colorado.edu/html_groupings/), and Czech (http://hdl.handle.net/11858/00-097C-0000-0001-4880-3) and English Wordnets (https://wordnet.princeton.edu/).
CzEngVallex is a bilingual valency lexicon of corresponding Czech and English verbs. It connects 20835 aligned valency frame pairs (verb senses) which are translations of each other, aligning their arguments as well. The CzEngVallex serves as a powerful, real-text-based database of frame-to-frame and subsequently argument-to-argument pairs and can be used for example for machine translation applications. It uses the data from the Prague Czech-English Dependency Treebank project (PCEDT 2.0, http://hdl.handle.net/11858/00-097C-0000-0015-8DAF-4) and it also takes advantage of two existing valency lexicons: PDT-Vallex for Czech and EngVallex for English, using the same view of valency (based on the Functional Generative Description theory). The CzEngVallex is available in an XML format in the LINDAT/CLARIN repository, and also in a searchable form (see the “More Apps” tab) interlinked with PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F),EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2) and with examples from the PCEDT.
EngVallex is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank and Verbnet, two existing English predicate-argument lexicons used, i.a., for the PropBank project. The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank, which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT.
EngVallex 2.0 as a slightly updated version of EngVallex. It is the English counterpart of the PDT-Vallex valency lexicon, using the same view of valency, valency frames and the description of a surface form of verbal arguments. EngVallex contains links also to PropBank (English predicate-argument lexicon). The EngVallex lexicon is fully linked to the English side of the PCEDT parallel treebank(s), which is in fact the PTB re-annotated using the Prague Dependency Treebank style of annotation. The EngVallex is available in an XML format in our repository, and also in a searchable form with examples from the PCEDT. EngVallex 2.0 is the same dataset as the EngVallex lexicon packaged with the PCEDT 3.0 corpus, but published separately under a more permissive licence, avoiding the need for LDC licence which is tied to PCEDT 3.0 as a whole.
Syntactic (including deep-syntactic - tectogrammatical) annotation of user-generated noisy sentences. The annotation was made on Czech-English and English-Czech Faust Dev/Test sets.
The English data includes manual annotations of English reference translations of Czech source texts. This texts were translated independently by two translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. Both the reference translations were annotated, which means 2000 annotated segments in total.
The Czech data includes manual annotations of Czech reference translations of English source texts. This texts were translated independently by three translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. All three reference translations were annotated, which means 3000 annotated segments in total.
Faust is part of PDT-C 1.0 (http://hdl.handle.net/11234/1-3185).
This machine translation test set contains 2223 Czech sentences collected within the FAUST project (https://ufal.mff.cuni.cz/grants/faust, http://hdl.handle.net/11234/1-3308).
Each original (noisy) sentence was normalized (clean1 and clean2) and translated to English independently by two translators.
The Feature-based (exponential model) Tagger is a fast implementation of the Czech tagger developed at UFAL and described in the PDT 1.0 documentation (Czech Language Tagging page). In order to get the best possible results, the tagger requires preprocessing by a Czech morphological module with a very high coverage. This module covers a superset of the Czech "FM" morphology. Both the morphological module and the tagger are supplied as binary executables, together with all necessary precompiled Czech data. Input must be in the ISO Latin 2 (iso-8859-2) code and follow the csts.dtd definition, and output is produced in the same way (ISO Latin 2 code, csts.dtd). (As is the case with many of the tools provided with PDT 1.0, both executables also accept - and then produce - a "simplified SGML", which is not a real, valid SGML, but simply contains at least the tags for words, punctuation, and sentence breaks, one item per line.)