Since their appearance in 1993, first approaching the Shannon limit, turbo codes have given a new direction in the channel encoding field, especially since they have been adopted for multiple norms of telecommunications such as deeper communication. A robust interleaver can significantly contribute to the overall performance a turbo code system. Search for a good interleaver is a complex combinatorial optimization problem. In this paper, we present genetic algorithms and differential evolution, two bio-inspired approaches that have proven the ability to solve non-trivial combinatorial optimization tasks, as promising optimization methods to find a well-performing interleaver for large frame sizes.