Czech data - both train and test+eval sets, as well as the valency dictionary - for the CoNLL 2009 Shared Task. Documentation is included. The data are generated from PDT 2.0. LDC catalog number: LDC2009E34B and MSM 0021620838 (http://ufal.mff.cuni.cz:8080/bib/?section=grant&id=116488695895567&mode=view)
Czech trial (example) data for CoNLL 2009 Shared Task. The data are generated from PDT 2.0. LDC2009E32B and MSM 0021620838 (http://ufal.mff.cuni.cz:8080/bib/?section=grant&id=116488695895567&mode=view)
Corpus of texts in 12 languages. For each language, we provide one training, one development and one testing set acquired from Wikipedia articles. Moreover, each language dataset contains (substantially larger) training set collected from (general) Web texts. All sets, except for Wikipedia and Web training sets that can contain similar sentences, are disjoint. Data are segmented into sentences which are further word tokenized.
All data in the corpus contain diacritics. To strip diacritics from them, use Python script diacritization_stripping.py contained within attached stripping_diacritics.zip. This script has two modes. We generally recommend using method called uninames, which for some languages behaves better.
The code for training recurrent neural-network based model for diacritics restoration is located at https://github.com/arahusky/diacritics_restoration.
A slightly modified version of the Czech Wordnet. This is the version used to annotate "The Lexico-Semantic Annotation of PDT using Czech WordNet": http://hdl.handle.net/11858/00-097C-0000-0001-487A-4
The Czech WordNet was developed by the Centre of Natural Language Processing at the Faculty of Informatics, Masaryk University, Czech Republic.
The Czech WordNet captures nouns, verbs, adjectives, and partly adverbs, and contains 23,094 word senses (synsets). 203 of these were created or modified by UFAL during correction of annotations. This version of WordNet was used to annotate word senses in PDT: http://hdl.handle.net/11858/00-097C-0000-0001-487A-4
A more recent version of Czech WordNet is distributed by ELRA: http://catalog.elra.info/product_info.php?products_id=1089 and 1ET201120505, LM2010013
English-Hindi parallel corpus collected from several sources. Tokenized and sentence-aligned. A part of the data is our patch for the Emille parallel corpus. and FP7-ICT-2007-3-231720 (EuroMatrix Plus) 7E09003 (Czech part of EM+)
HindEnCorp parallel texts (sentence-aligned) come from the following sources:
Tides, which contains 50K sentence pairs taken mainly from news articles. This dataset was originally col- lected for the DARPA-TIDES surprise-language con- test in 2002, later refined at IIIT Hyderabad and provided for the NLP Tools Contest at ICON 2008 (Venkatapathy, 2008).
Commentaries by Daniel Pipes contain 322 articles in English written by a journalist Daniel Pipes and translated into Hindi.
EMILLE. This corpus (Baker et al., 2002) consists of three components: monolingual, parallel and annotated corpora. There are fourteen monolingual sub- corpora, including both written and (for some lan- guages) spoken data for fourteen South Asian lan- guages. The EMILLE monolingual corpora contain in total 92,799,000 words (including 2,627,000 words of transcribed spoken data for Bengali, Gujarati, Hindi, Punjabi and Urdu). The parallel corpus consists of 200,000 words of text in English and its accompanying translations into Hindi and other languages.
Smaller datasets as collected by Bojar et al. (2010) include the corpus used at ACL 2005 (a subcorpus of EMILLE), a corpus of named entities from Wikipedia (crawled in 2009), and Agriculture domain parallel corpus.

For the current release, we are extending the parallel corpus using these sources:
Intercorp (Čermák and Rosen,2012) is a large multilingual parallel corpus of 32 languages including Hindi. The central language used for alignment is Czech. Intercorp’s core texts amount to 202 million words. These core texts are most suitable for us because their sentence alignment is manually checked and therefore very reliable. They cover predominately short sto- ries and novels. There are seven Hindi texts in Inter- corp. Unfortunately, only for three of them the English translation is available; the other four are aligned only with Czech texts. The Hindi subcorpus of Intercorp contains 118,000 words in Hindi.
TED talks 3 held in various languages, primarily English, are equipped with transcripts and these are translated into 102 languages. There are 179 talks for which Hindi translation is available.
The Indic multi-parallel corpus (Birch et al., 2011; Post et al., 2012) is a corpus of texts from Wikipedia translated from the respective Indian language into English by non-expert translators hired over Mechanical Turk. The quality is thus somewhat mixed in many respects starting from typesetting and punctuation over capi- talization, spelling, word choice to sentence structure. A little bit of control could be in principle obtained from the fact that every input sentence was translated 4 times. We used the 2012 release of the corpus.
Launchpad.net is a software collaboration platform that hosts many open-source projects and facilitates also collaborative localization of the tools. We downloaded all revisions of all the hosted projects and extracted the localization (.po) files.
Other smaller datasets. This time, we added Wikipedia entities as crawled in 2013 (including any morphological variants of the named entitity that appears on the Hindi variant of the Wikipedia page) and words, word examples and quotes from the Shabdkosh online dictionary. and LM2010013,
A Hindi corpus of texts downloaded mostly from news sites. Contains both the original raw texts and an extensively cleaned-up and tokenized version suitable for language modeling. 18M sentences, 308M tokens and FP7-ICT-2007-3-231720 (EuroMatrix Plus), 7E09003 (Czech part of EM+)
Hindi monolingual corpus. It is based primarily on web crawls performed using various tools and at various times. Since the web is a living data source, we treat these crawls as completely separate sources, despite they may overlap. To estimate the magnitude of this overlap, we compared the total number of segments if we concatenate the individual sources (each source being deduplicated on its own) with the number of segments if we de-duplicate all sources to- gether. The difference is just around 1%, confirming, that various web crawls (or their subsequent processings) differ significantly.
HindMonoCorp contains data from:
Hindi web texts, a monolingual corpus containing mainly Hindi news articles has already been collected and released by Bojar et al. (2008). We use the HTML files as crawled for this corpus in 2010 and we add a small crawl performed in 2013 and re-process them with the current pipeline. These sources are denoted HWT 2010 and HWT 2013 in the following.
Hindi corpora in W2C have been collected by Martin Majliš during his project to automatically collect corpora in many languages (Majliš and Žabokrtský, 2012). There are in fact two corpora of Hindi available—one from web harvest (W2C Web) and one from the Wikipedia (W2C Wiki).
SpiderLing is a web crawl carried out during November and December 2013 using SpiderLing (Suchomel and Pomikálek, 2012). The pipeline includes extraction of plain texts and deduplication at the level of documents, see below.
CommonCrawl is a non-profit organization that regu- larly crawls the web and provides anyone with the data. We are grateful to Christian Buck for extracting plain text Hindi segments from the 2012 and 2013-fall crawls for us.
Intercorp – 7 books with their translations scanned and manually alligned per paragraph
RSS Feeds from Webdunia.com and the Hindi version of BBC International followed by our custom crawler from September 2013 till January 2014. and LM2010013,
This dataset contains annotation of PDT using Czech WordNet ontology: http://hdl.handle.net/11858/00-097C-0000-0001-4880-3
Data is stored in PML format. This is a stand-off annotation and for most use cases it requires PDT 2.0 and the Czech WordNet 1.9 PDT that we have used for annotation. and 1ET100300517, 1ET201120505
The ParCzech 3.0 corpus is the third version of ParCzech consisting of stenographic protocols that record the Chamber of Deputies’ meetings held in the 7th term (2013-2017) and the current 8th term (2017-Mar 2021). The protocols are provided in their original HTML format, Parla-CLARIN TEI format, and the format suitable for Automatic Speech Recognition. The corpus is automatically enriched with the morphological, syntactic, and named-entity annotations using the procedures UDPipe 2 and NameTag 2. The audio files are aligned with the texts in the annotated TEI files.