Arterial compliance is an important cardiovascular parameter characterizing mechanical and structural properties of arteries and significantly influencing ventricular-arterial coupling. Decreased arterial compliance is associated with several physiological states and pathological processes. Furthermore, arterial compliance is influenced by other cardiovascular parameters even at short time scales. Today, there are numerous noninvasive methods of estimation arterial compliance in vivo introducing some level of confusion about selection of the best method for particular application and measurement setting. In this review, the most common noninvasive methods of arterial compliance estimation are summarized, discussed and categorized. Finally, interpretation of estimated arterial compliance in the context of other possible confounders is discussed.
Climate change may facilitate shifts in the ranges and the spread of insect pests, but a warming climate may also affect herbivorous insects adversely if it disrupts the locally adapted synchrony between the phenology of insects and that of their host plant. The ability of a pest species to colonize new areas depends on its ability to adjust the timing of phenological events in its life cycle, particularly at high latitudes where there is marked seasonality in temperature and day length. Here we incubated eggs of three species of geometrid moth, Epirrita autumnata, Operophtera brumata and Erannis defoliaria from different geographical populations (E. autumnata and O. brumata from Northern Finland, E. autumnata and E. defoliaria from Southern Finland and all three species from Germany) in a climate chamber at a constant temperature to determine the relative importance of geographic origin in the timing of egg hatch measured in terms of cumulative temperature sums (degree days above 5°C, DD5); i.e. the relative importance of local adaptation versus phenotypic plasticity in the timing of egg hatch. In all three species, eggs from northern populations required a significantly lower temperature sum for hatching than eggs from southern populations, but the differences between them in temperature sum requirements varied considerably among species, with the differences being largest for the earliest hatching and northernmost species, E. autumnata, and smallest for the southern, late-hatching E. defoliaria. In addition, the difference in hatch timing between the E. autumnata eggs from Southern Finland and Germany was many times greater than the difference between the two Finnish populations of E. autumnata, despite the fact that the geographical distances between these populations is similar. We discuss how these differences in hatching time may be explained by the differences in hatch-budburst synchrony and its importance for different moth species and populations. We also briefly reflect on the significance of photoperiod, which is not affected by climate change. It is a controller that works parallel or in addition to temperature sum both for egg hatch in moths and bud burst of their host plants., Julia Fält-Nardmann, Tero Klemola, Mechthild Roth, Kai Ruohomäki, Kari Saikkonen., and Obsahuje bibliografii
Insects produce pigment and structural colours mainly for camouflage, signaling, physical protection or temperature regulation, and colour patterns can provide information about individual quality. Although the evolutionary function and nature of the variability in colouration are well known for many invertebrate taxa, there is little information on this topic for ants. We studied individual variation in the melanin-based colour traits of workers of the red wood ant, Formica rufa (Hymenoptera: Formicidae), from 20 colonies in Southern Finland and revealed the type of colouration in this species. First, using the threshold approach we distinguished between continuous and discrete variations. Furthermore, the analyses affirmed nine discrete morphs in terms of the colouration on the head and eight on the pronotum, while only continuous variation were found on the other body parts. Measuring the size of a particular colour pattern, the intensity of colour expression (degree of melanization) and statistical analyses allowed an assessment of the intra-individual variation in both discrete and continuous patterns. The results revealed substantial modularity in the above mentioned colouration traits. In workers of F. rufa there were individuals with a dark head and light coloured thorax and vice a versa. Size of the dark pigment colour patterns exhibited less modularity than the degree of melanization. Finally, the interrelation between colouration traits and individual body size revealed their size-dependent origin. Small individuals had relatively larger areas of colour on the head and thorax than big individuals. These results are likely to facilitate further taxonomical and ecological studies on red wood ants, as they show it is possible to assess colouration traits in ants. However, more studies are needed on the function of polymorphism and modular colouration in this group of ants., Oksana Skaldina, Jouni Sorvari., and Obsahuje bibliografii
The viviparous gyrodactylid genus Macrogyrodactylus Malmberg, 1957 is endemic to Africa, composed of nine species from hosts of four freshwater fish families, including catfishes (Siluriformes: Clariidae). Three species, Macrogyrodactylus clarii Gussev, 1961; M. congolensis (Prudhoe, 1957) and M. karibae Douëllou et Chishawa, 1995, are primarily known to parasitise the African sharptooth catfish Clarias gariepinus (Burchell) in various African countries. From November 2017 to September 2019, a total of 184 individuals of C. gariepinus were collected from selected localities in southern Africa and their skin, fins and gills were surveyed for monogeneans. Three species of Macrogyrodactylus (M. clarii, M. congolensis and M. karibae) were found parasitising C. gariepinus from five localities in South Africa and Zambia. Overall prevalence was 50% to 100% with intensities of up to 109 parasites per host individual. New locality records in southern Africa, morphological observations and additional molecular data on the complete Internal Transcriber Spacer (ITS-1-5.8S-ITS-2) regions of the rDNA gene for the three gyrodactylid species are presented in this study.