Wolbachia is a maternally transmitted intracellular symbiont which causes reproductive distortions in the arthropods it infects. In recent years there has been an increasing interest in using Wolbachia as a potential tool for biological control by genetic manipulation of insect pests. In the present paper we report Wolbachia infection in several Trissolcus wasps (Hymenoptera: Scelionidae) which are important egg parasitoids of the sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutellaridae). We used DNA sequence data for a gene encoding a surface protein of Wolbachia (wsp) not only to confirm Wolbachia infection but also to discriminate Wolbachia strains. Phylogenetic analyses indicated that Wolbachia strains in Trissolcus species were closely related to one another and belonged to supergroup B. Determination of the infection status of various populations, the possible role of Wolbachia in causing the incompatibility and knowledge of the reproductive compatibility of Trissolcus populations is important for the success of parasitoids in sunn pest management., Nurper Guz ... [et al.]., and Obsahuje seznam literatury
Wolbachia pipientis (Hertig) (Rickettsiaceae) is an endocellular bacterium infecting numerous species of arthropods. The bacterium is harboured by males and females but is only transmitted maternally because spermatocytes shed their Wolbachia during maturation. The presence of this endosymbiont can lead to feminisation of the host, parthenogenesis, male-killing or reproductive incompatibility called cytoplasmic incompatibility (CI). Although Wolbachia transmission is exclusively maternal, phylogenetic evidence indicates that very rare inter-species transmission events have taken place. Horizontal transmission is possible in the laboratory by transferring cytoplasm from infected to uninfected eggs. Using this technique, we have artificially infected lines of the fruit fly Drosophila simulans Sturtevant (Drosophilidae). Recipient lines came from two different D. simulans populations. One ("naive" host) is not infected in the wild. The other ("usual" host) is a population naturally carrying Wolbachia in the wild. In this second case, recipient flies used in the experiment came from a stock culture that had been cured off its infection beforehand by an antibiotic treatment. Infected D. simulans laboratory stocks were used as donors. We assessed the three following parameters: (i) trans-infection success rate (ratio of infected over total female zygote having survived the injection), (ii) level of cytoplasmic incompatibility expressed by trans-infected males three generations post-trans-infection, and (iii) infection loss rate over time in trans-infected lines (percentage of lines having lost the infection after 20 to 40 generations). We observed that parameter (i) did not differ significantly whether the recipient line came from a "naive" or a "usual" host population. However, both (ii) and (iii) were significantly higher in the "naive" trans-infected stock, which is in agreement with earlier theoretical considerations.