The effects of 0, 30, 60, and 90 mM NaCl, and 0 and 5 mM CaCl2 on certain parameters of photosynthesis and growth in alfalfa (Medicago sativa L. cv. Ghara yonjeh) plants were studied. The increasing NaCl concentration in the Hoagland nutrient solution decreased the contents of chlorophylls and the net photosynthetic rate, and increased the rate of respiration (RD) and CO2 compensation concentration in the leaves of treated plants. The contents of carotenoids (Car) were not significantly affected. The addition of 5 mM CaCl2 enhanced the RD and increased the Car contents in treated leaves. With the NaCl concentration in the culture medium increasing, the dry matter production in both root and shoot decreased, as well as the relative growth rate (RGR), net assimilation rate (NAR), and leaf area ratio (LAR). The addition of CaCl2 caused a partial elimination of the NaCl effects on the root and shoot, RGR and NAR, and it decreased the LAR. and R. A. Khavari-Nejad, N. Chaparzadeh.
The effects of nitroglycerine (NTG) are mediated by liberated nitric oxide (NO) after NTG enzymatic bio-transformation in cells. The aim of this study was to evaluate some products of NTG bio-transformation and their consequences on the redox status of rat erythrocytes and reticulocytes, considering the absence and presence of functional mitochondria in these cells, respectively. Rat erythrocyte and reticulocyte-rich red blood cell (RBC) suspensions were aerobically incubated (2 h, 37 0C) without (control) or in the presence of different concentrations of NTG (0.1, 0.25, 0.5, 1.0 and 1.5 mM). In rat erythrocytes, NTG did not elevate the concentrations of any reactive nitrogen species (RNS). However, NTG robustly increased concentration of methemoglobin (MetHb), suggesting that NTG bio-transformation was primarily connected with hemoglobin (Hb). NTG-induced MetHb formation was followed by the induction of lipid peroxidation. In rat reticulocytes, NTG caused an increase in the levels of nitrite, peroxinitrite, hydrogen peroxide, MetHb and lipid peroxide levels, but it decreased the level of the superoxide anion radical. Millimolar concentrations of NTG caused oxidative damage of both erythrocytes and reticulocytes. These data indicate that two pathways of NTG bio-transformation exist in reticulocytes: one generating RNS and the other connected with Hb (as in erythrocytes). In conclusion, NTG bio-transformation is different in erythrocytes and reticulocytes due to the presence of mitochondria in the latter.
1_Coraebus florentinus (Herbst) is one of the most important wood borer pests of oaks in forest ecosystems in the Mediterranean Region. It is considered to be a heliophilous species as it prefers the sunniest parts of the canopy of isolated trees. The biological significance of this preference is still unknown. Recently, the effect of temperature on the preimaginal development of this insect was established: high temperatures increase its probability of survival and shorten its developmental time. Continuing this line of research, this study was designed to determine whether C. florentinus exhibits selective oviposition behaviour and how variation in temperature due to differences in the position of the branches in which the larvae develop could affect the subsequent development of this species. To determine whether this insect selects the branches in which to lay its eggs, location data (north, south, upper half and lower half of the tops of the trees) for 112 damaged branches were analysed. The results confirm that females of C. florentinus do not lay their eggs at random at the tops of trees but rather choose branches that are exposed to the sun. To determine the effects of larval rearing temperature on the later development stages, an experiment consisting of five treatments was performed., 2_Four of these treatments, each containing 25 infested branches derived from different orientations and positions in a tree (upper half of tree and north facing, upper half and south facing, lower half and north facing and lower half and south facing) were kept in culture chambers maintained at optimal conditions for pupal development (28 ± 2°C and 60–65% relative humidity). The fifth treatment with 25 branches infested collected from the most sun-exposed locations were kept in outdoor conditions. The results indicate that variation in temperature during larval development due to differences in branch location does not significantly affect survival, duration of developmental of pupae, emergence success or sex ratio of the adults., Ana M. Cárdenas, Patricia Gallardo., and Obsahuje seznam literatury
As a common tree species in northern China, Populus × euramericana "Neva" has an important practical value for the study of continuous cropping obstacles in poplar cultivation. Plant allelopathy is the main reason for continuous cropping obstacles, which are caused by allelochemicals, such as para-hydroxybenzoic acid (p-HB). The objective of this study was to investigate the effects of p-HB on the photosynthesis of poplar. Photosynthetic parameters of Populus × euramericana "Neva" poplar were determined in a pot culture experiment where five p-HB concentrations were used (0, 1, 2, 4, and 6 mmol L−1). Each seedling was treated with 4 L of p-HB solution every seven days, ten times in total. p-HB inhibited the photosynthesis of poplar significantly, as shown by a clear decline in the net photosynthetic rate. Our results indicated nonstomatal limitation responsible for the photosynthesis reduction., G. T. Liang, S. Y. Zhang, J. Guo, R. Yang, H. Li, X. C. Fang, G. C. Zhang., and Obsahuje bibliografii
Differences in lipid metabolism of tumor and normal tissues suggest a distinct response to available lipid compounds. In this study, the in vitro effects of five types of commercial parenteral lipid emulsions were investigated on human cell lines derived from normal fetal colon (FHC) or colon adenocarcinoma (HT-29). Changes of the cellular lipid fatty acid content, cell oxidative response, and the cell growth and death rates were evaluated after 48 h. No effects of any type of emulsions were detected on cell proliferation and viability. Compared to the controls, supplementation with lipid emulsions resulted in a multiple increase of linoleic and linolenic acids in total cell lipids, but the content of arachidonic, eicosapentaenoic, and docosahexaenoic acids decreased particularly in HT-29 cells. The concentration of emulsions which did not affected HT-29 cells increased the percentage of floating and subG0/G1 FHC cells probably due to their higher reactive oxygen species production and lipid peroxidation. Co-treatment of cells with antioxidant Trolox reduced the observed effects. Our results imply that lipid emulsions can differently affect the response of colon cells of distinct origin.
We investigated the effect of pertussis toxin (PTX) on hypotensive response induced by acetylcholine (ACh) and bradykinin (BK) and on noradrenaline (NA)-induced pressor response in spontaneously hypertensive rats (SHR). Fifteen-week-old Wistar rats and age-matched SHR were used. Half of SHR received PTX (10 μg/kg/i.v.) and the experiments were performed 48 h later. After the anesthesia the right carotid artery was cannulated in order to record blood pressure (BP). The hypotensive response to ACh was enhanced in SHR compared to Wistar rats. After pretreatment of SHR with PTX the hypotensive response to ACh was reduced compared to untreated SHR and it was also diminished in comparison to Wistar rats. Similarly, the hypotensive response to BK was also decreased after PTX pretreatment. The pressor response to NA was increased in SHR compared to Wistar rats. NA-induced pressor response was considerably decreased after PTX pretreatment compared to untreated SHR. In conclusion, the enhancement of hypotensive and pressor responses in SHR was abolished after PTX pretreatment. Our results suggested that the activation of PTX-sensitive inhibitory Gi proteins is involved in the regulation of integrated vasoactive responses in SHR and PTX pretreatment could be effectively used for modification of BP regulation in this type of experimental hypertension., S. Čačányiová, F. Kristek, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
Populus x euramericana cv. ‘Neva’ is an important tree species in northern China. In the study, we used its potted oneyear- old seedlings as experimental material and established three treatments (CK, 0.5X, and 1.0X) according to the concentrations of phenolic acids in order to examine the effects of different concentrations on the photosynthetic characteristics and growth of poplar. With increasing concentrations of phenolic acids, the net photosynthetic rate, stomatal limitation, transpiration rate, apparent quantum yield, photochemical quenching coefficient, electron transport rate, chlorophyll content, and total biomass decreased significantly. The intercellular CO2 concentration, light-compensation point, nonphotochemical quenching, malondialdehyde content, and root/shoot ratio increased significantly. Peroxidase and superoxide dismutase activities initially decreased and then increased. We concluded that phenolic acids significantly inhibited poplar’s photosynthesis and the higher phenolic acid concentration, the greater inhibition of photosynthesis occurred. This inhibition effect was mainly caused by nonstomatal factors. Phenolic acids induced noticeable photoinhibition, resulted in the irreversible damage of membrane structure, and then changed intracellular metabolic processes. To cope with phenolic acid stress, poplar seedlings increased dissipation of excess light energy and distributed relatively more biomass to underground parts within carbon allocation., D. F. Xie, G. C. Zhang, X. X. Xia, Y. Lang, S. Y. Zhang., and Obsahuje bibliografii
Partial (600 bp) sequences of mitochondrial cytochrome oxidase I (COI) gene were used to infer the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae) across the entire distributional range of the species, encompassing north Africa and Eurasia. Cladistic analysis of 49 distinct haplotypes (haplotype and nucleotide diversity were 0.95 and 0.027, respectively) revealed strong phylogeographic structure in M. cinxia, characterised by four major clades: Morocco; Western (Iberia, France, Italy); Central (central and northern Western Europe, Balkans, Greece, Anatolia, Levant); and Eastern (eastern Baltic, Urals, Iran, Siberia, China); separated by average pairwise distances of beween 2 and 6 percent. This pattern is consistent with the location of southern glacial refugia in the Iberian, Italian and Balkan peninsulas, as well as multiple eastern refugia. The Western clade is further structured into south-central Iberian, northern Iberian (and French) and southern Italian sub-clades; and the Eastern clade into Near Eastern and Far Eastern sub-clades; with weaker phylogeographical concordance within the Central clade, except for a large area in central and northern Western Europe which is monomorphic for COI haplotype. The Baltic and eastern Europe have been primarily colonized by the Far Eastern sub-clade, rather than the Central (Balkan) clade, highlighting the importance of including Near and Far Eastern populations in phylogeographic studies of Palearctic species. Maps showing the extent of clades and sub-clades suggest several regions of secondary contact and possible hybridization. Interspecific comparison of representative M. cinxia haplotypes supports a monophyletic origin of all M. cinxia.
The changes of runoff in the middle reaches of the Yellow River basin of China have received considerable attention owing to their sharply decline during recent decades. In this paper, the impacts of rainfall characteristics and land use and cover change on water yields in the Jingle sub-basin of the middle reaches of the Yellow River basin were investigated using a combination of statistical analysis and hydrological simulations. The Levenberg Marquardt and Analysis of Variance methods were used to construct multivariate, nonlinear, model equations between runoff coefficient and rainfall intensity and vegetation coverage. The land use changes from 1971 to 2017 were ascertained using transition matrix analysis. The impact of land use on water yields was estimated using the M-EIES hydrological model. The results show that the runoff during flood season (July to September) decreased significantly after 2000, whereas slightly decreasing trend was detected for precipitation. Furthermore, there were increase in short, intense, rainfall events after 2000 and this rainfall events were more conducive to flood generation. The “Grain for Green” project was carried out in 1999, and the land use in the middle reaches of the Yellow River improved significantly, which make the vegetation coverage (Vc) of the Jingle sub-basin increased by 13%. When Vc approaches 48%, the runoff coefficient decreased to the lowest, and the vegetation conditions have the greatest effect on reducing runoff. Both land use and climate can change the water yield in the basin, but for areas where land use has significantly improved, the impact of land use change on water yield plays a dominant role. The results acquired in this study provide a useful reference for water resources planning and soil and water conservation in the erodible areas of the middle reaches of the Yellow River basin.
In a previous study, the topsoil and root zone ASCAT satellite soil moisture data were implemented into three multi-objective calibration approaches of the TUW hydrological model in 209 Austrian catchments. This paper examines the model parametrization in those catchments, which in the validation of the dual-layer conceptual semi-distributed model showed improvement in the runoff simulation efficiency compared to the single objective runoff calibration. The runoff simulation efficiency of the three multi-objective approaches was separately considered. Inferences about the specific location and the physiographic properties of the catchments where the inclusion of ASCAT data proved beneficial were made. Improvements were primarily observed in the watersheds with lower slopes (median of the catchment slope less than 15 per cent) and a higher proportion of farming land use (median of the proportion of agricultural land above 20 per cent), as well as in catchments where the runoff is not significantly influenced by snowmelt and glacier runoff. Changes in the mean and variability of the field capacity parameter FC of the soil moisture regime were analysed. The values of FC decreased by 20 per cent on average. Consequently, the catchments’ water balance closure generally improved by the increase in catchment evapotranspiration during the validation period. Improvements in model efficiency could be attributed to better runoff simulation in the spring and autumn month. The findings refine recommendations regarding when hydrological modelling could consider satellite soil moisture data added to runoff signatures in calibration useful.