Metabolic rate and body temperature (Tb) reduction during torpor can provide significant energy savings for bats during inclement weather and food scarcity. However, torpor use may slow down biochemical processes including fetal and juvenile development and sperm production. Sex-differences in the timing of reproductive activity of bats in the temperate climate zone should result in differences of the thermoregulation behaviour by males and females during summer. To test this hypothesis, we studied thermoregulation of freeranging, tree-dwelling gleaning bats (Myotis bechsteinii) and trawling bats (M. daubentonii) during different reproductive periods. Gleaners and trawlers are able to forage on prey which is sitting on vegetation and the ground (gleaning) or which is slowly moving over water bodies (trawling). This prey is characterized by lower ambient temperature (Ta) dependent abundance than flying prey. We used temperature-sensitive radio transmitters to measure skin temperature (Tsk). Temperature telemetry over 144 census days revealed a significant effect of reproductive period and sex on Tsk. Pre-spermatogenic males exhibited a significantly greater Tsk reduction than females in early pregnancy. Males at the beginning of sperm production and in main spermatogenesis exhibited much more frequent and deeper temperature reductions than females in late pregnancy and in lactation. Lactating females maintained the highest Tsk of all bats. Post-lactating females reduced Tsk to the same extent or even more than males in advanced spermatogenesis. Our findings indicate that the thermoregulation of gleaning and trawling temperate bats is likely to be much less influenced by environmental conditions than that of aerial hawking bat species. We suggest that both sexes of Bechstein’s bats and Daubenton’s bats primarily adapt their thermoregulation in response to current reproductive activity.
The species specific response of photosystem 2 (PS2) efficiency and its thermotolerance to diurnal and seasonal alterations in leaf temperature, irradiance, and water relations were investigated under alpine field conditions (1 950 m) and in response to an in situ long-term heat treatment (+3 K). Three plant species were compared using the naturally occurring microstratification of alpine environments, i.e. under contrasting leaf temperatures but under similar macroclimatic conditions. Thermotolerance of PS2 showed a high variability in all three species of up to 9.6 K. Diumal changes (increases or even decreases) in PS2 thermotolerance occurred frequently with a maximum increase of +4.8 K in Loiseleuria procumbens. Increasing leaf temperatures and photosynthetic photon flux density influenced thermotolerance adjustments. Under long-term heating (+3 K) of L. procumbens canopies with infra-red lamps, the maxima of the critical (Tc) and the lethal (Tp) temperature of PS2 increased by at least 1 K. Thermotolerance of the leaf tissue (LT50) increased significantly by +0.6 K. The effects of slight water stress on thermotolerance of PS2 were species specific. High temperature thresholds for photoinhibition were significantly different between species and increased by 9 K from the species in the coldest microhabitat to the species in the warmest. Experimental heating of L. procumbens canopies by +3 K caused a significant (p>0.01) upward shift of the high temperature threshold for photoinhibition by +3 K. Each species appeared to be very well adapted to the thermal conditions of its microhabitat as under the most frequently experienced daytime leaf temperatures no photoinhibition occurred. The observed fine scale thermal adjustment of PS2 in response to increased leaf temperatures shows the potential to optimise photosynthesis under varying environmental conditions as long as the upper thermal limits are not exceeded. and V. Braun, O. Buchner, G. Neuner.
The common bean (Phaseolus vulgaris L.) is sensitive to high temperature, while an ecologically contrasting species (Phaseolus acutifolius A. Gray) is cultivated successfully in hot environments. In this study, the two bean species were respectively acclimated to a control temperature of 25 °C and a moderately elevated temperature of 35 °C in order to compare the thermotolerance capabilities of their photosynthetic light reactions. Growth at 35 °C appeared to have no obvious adverse effect on the photosynthetic activities of the two beans, but changed their thermotolerance. After a short period of heat shock (40 °C for up to 4 h), the photosynthetic activities of 25 °C-grown P. vulgaris declined more severely than those of P. acutifolius grown at 25 °C, implying that the basal thermotolerance of P. vulgaris is inferior to that of P. acutifolius. But after acclimating to 35 °C, the thermotolerances of the two species were both greatly enhanced to about the same level, clearly demonstrating the induction of acquired thermotolerance in their chloroplasts, and P. vulgaris could be as good as P. acutifolius. Temperature acclimation also changed plants' resistance to photoinhibition in a manner similar to those toward heat stress. In addition, acquisition of tolerance to heat and strong irradiance would reduce the dependency of the two beans on xanthophyll pigments to dissipate heat, and also seemed irrelevant to the agents with antioxidant activities such as SOD. and C. M. Tsai, B. D. Hsu.
Knihovna Národního muzea Praha CZ Zámecká knihovna Žleby I. 2, Regionální muzeum Mělník Vysoké Mýto CZ CB 138, PRAGÆ, Typis Univ. Carolo-Ferdinandeæ, in Collegio Soc. JESU ad S. Clementem. Per Factorem Adalbertum Georgium Konias., and BCBT41565
Praha Královská kanonie premonstrátů na Strahově - Strahovská knihovna AQ XII 21 č. 2, PRAGÆ Typis Univerſitatis Carolo-Ferdinandeæ in Collegio Societatis JESV ad Sanctum CLEMENTEM., and BCBT31685