Modelling of turbulent flow in curved channels and diffusers of rectangular cross-section was aimed at the evolution of secondary flow and origin of flow separation and their connection with energy losses and pressure recovery. Results of numerical simulations carried out using software CFX TASCflow 2.12 were compared with experiments made in a water channel. Turbulent flow in diffusers of rectangular cross-section with the constant channel height, flow turn angle 90 deg and area ratio AR = 1.5 was investigated. Numerical simulation was carried out for flow in diffusers with the cylindrical inner wall and with the cylindrical centreline. Turbulent flow in a curved channel of constant cross-section was investigated for comparison. Further, the effect of the inner wall radius on the character of flow in the diffuser was studied. Flow separation occurs on the inner wall of the channel before the bend exit and its extent is restricted to the central part of the channel due to secondary flow going from the sidewalls to the channel axis. The extent of separation region and consequently the energy losses decrease with the increasing radius of the inner wall curvature. and Obsahuje seznam literatury
This work with numerical and experimental studies of specific issues of natural convection flow around a horizontal cylinder in a space limited by rectangular cavity. Physical models of laminar unsteady flows have been used for numerical calculations of heat transfer coefficients of four different diameters of horizontal cylinders and for several temperature gradients. Procedures and results of the experimental studies are contained in the next section. All results were compared with different authors and different approaches, However the Nusselt numbers can be estimated due to the temperature interval, the results indicate need for further investigation. and Obsahuje seznam literatury
This paper presents the results of an experimental and numerical study of a vertical slot fishway (VSF). A 2-D depth-averaged shallow water numerical model PCFLOW2D coupled with three different turbulent models (constant eddy viscosity, Smagorinsky and k - ε) was used. A detailed analysis of numerical parameters needed for a correct simulation of the phenomenon was carried out. Besides the velocity field, attention was paid to important hydraulic parameters such as maximum velocity in the slot region and energy dissipation rate ε in order to evaluate the performance of VSF. A scaled physical hydraulic model was built to ensure reliable experimental data for the validation of the numerical model. Simulations of variant configurations of VSF showed that even small changes in geometry can produce more fishfriendly flow characteristics in pools. The present study indicates that the PCFLOW2D program is an appropriate tool to meet the main demands of the VSF design.
In this paper, two- and three-dimensional numerical modeling is applied in order to simulate water flow behavior over the new Niedów barrage in South Poland. The draining capacity of one of the flood alleviation structures (ogee weir) for exploitation and catastrophic conditions was estimated. In addition, the output of the numerical models is compared with experimental data. The experiments demonstrated that the draining capacity of the barrage alleviation scheme is sufficiently designed for catastrophic scenarios if water is flowing under steady flow conditions. Nevertheless, the new cofferdam, which is part of the temporal reconstruction works, is affecting the draining capacity of the whole low-head barrage project.
This paper identifies the stress redistribution of protected seams under the influence of coal pillars and a divisional management strategy for methane control. A coal pillar that is reserved in the protective seam greatly affects the abutment stress, the O-shaped circle’s evolution and the stress distribution. The strain-soften model was conducted using FLAC3D numerical analysis software to investigate the stress redistribution in the protected seam mining process. The results show that the abutment stress reaches a maximum value of 1.25 times the original stress when a protected seam coal face lies in the center of the coal pillar’s affected zone. The O-shaped circle is divided into two parts by the coal pillar, and its developmental width is closely associated with the protected seam mining stage and the developmental height of the “three zones”, especially the fractured zone. The stress redistribution of protected seam is rarely affected by the coal pillar when the distance is greater than 26 m. Both the total increased stress belt of the coal pillar affected zone and the total decreased stress belt of the other zones along the vertical direction significantly influence the methane migration. We propose a divisional management strategy that supplies a theoretical basis and technical guidance for methane control.
In order to investigate effects of the dynamic capillary pressure-saturation relationship used in the modelling of a flow in porous media, a one-dimensional fully implicit numerical scheme is proposed. The numerical scheme is used to simulate an experimental procedure using a measured dataset for the sand and fluid properties. Results of simulations using different models for the dynamic effect term in capillary pressure-saturation relationship are presented and discussed.
The flow of a solid-water mixture through an upward-facing step in a channel is numerically investigated. The effect of expansion ratio, mean solids volume fraction and particle diameter on the velocity field, pressure distribution and solid volume fraction field is studied. Expansion ratios of 0.50 and 0.67, particle diameter of 125 µm and 440 µm and mean solid volume fraction between 0.05 and 0.20 are considered. Particle density is 2465 kg m-3 . An Eulerian twofluid model is used to simulate the flow. Due to the lack of experimental data, the model was validated by comparison to other numerical investigations and to experimental data about the horizontal pipe case. Afterwards, it is studied the effect of the above mentioned parameters upon the degree of coupling between the phases and the extension of the disturbance region in the pressure and solid volume fraction fields downstream the step. Parameters of engineering interest, such as the reattachment length and the pressure recovery downstream the enlargement, are investigated.
We propose unified approach for analysis of finite discrete time Markov chains. We show some possibilities for computing stationary probabilty vectors even in the case of reducible transition matrix. Finally we show one method for computing of Mean First Passage Times Matrices. and Obsahuje seznam literatury
This paper deals with the numerical simulation of spherical particle saltation in a channel with a rough transversely tilted bed. The numerical model presented is based on the 3D model of spherical particle saltation developed by the authors, which takes into account the translational and rotational particle motion. The stochastic method and the concept of a contact zone were used for the calculation of a particle trajectory and its dependence on the bed lateral slope, particle diameter, and shear velocity. The effect of the bed lateral slope results in a deviation of the particle trajectory from the downstream direction. Some examples of the calculation are presented. The trajectories of the saltating particles starting their movements from one point were calculated and it was shown that they are of random character and together create a bundle or fascicle of trajectories. It was found that the centrelines of the bundles can be approximated by the straight lines for low and moderate values of the bed transverse slope, i.e. slopes less than 20°. The angle of deviation of the centreline from the downstream direction increases when the bed lateral slope and/or the particle diameters increase. However, with increasing shear velocity, the deviation angle decreases. Due to the lateral bed slope the particles are sorted according to their size, and the criteria for sorting particles were defined. An example of the particle sorting was calculated and the separable and nonseparable regions were determined. and Studie popisuje numerickou simulaci saltačního pohybu kulovité částice v korytě s příčně skloněným drsným dnem. Předložený numerický model je založen na autory vyvinutém 3D modelu saltačního pohybu kulovité částice, který počítá s translačním i rotačním pohybem částice. Pro výpočet trajektorie částice a její závislosti na příčném sklonu dna koryta, průměru částice a smykové rychlosti nosné kapaliny byla použita stochastická metoda a koncept kontaktní zóny. Vlivem příčného sklonu dna koryta dochází k odchylce trajektorie částice od směru proudu. Trajektorie částic začínajících svůj pohyb v jednom bodě byly vypočteny a bylo ukázáno, že trajektorie jsou náhodného charakteru a tvoří společně svazek trajektorií, jehož osa může být pro nízké a střední hodnoty příčného sklonu dna koryta aproximována přímkou. Vlivem příčného sklonu dna koryta může dojít k roztřídění částic podle velikosti. Bylo spočteno několik příkladů třídění, definováno kriterium třídění a určeny oblasti třídění podle velikosti částic a sklonu dna koryta.