Kinetics of non-photochemical reduction of the photosynthetic intersystem electron transport chain by exogenous NADPH was examined in osmotically lysed spinach chloroplasts by chlorophyll (Chl) fluorescence measurements under anaerobic condition. Upon the addition of NADPH, the apparent F0 increased sigmoidally, and the value of the maximal slope was calculated to give the reduction rate of plastoquinone (PQ) pool. Application of 5 µM antimycin A lowered significantly both the ceiling and the rate of the NADPH-induced Chl fluorescence increase, while the suppressive effect of 10 µM rotenone was slighter. This indicated that dark reduction of the PQ pool by NADPH in spinach chloroplasts under O2-limitation condition could be attributed mainly to the pathway catalysed sequentially by ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin-plastoquinone reductase (FQR), rather than that mediated by NAD(P)H dehydro-genase (NDH). and Ming-Xian Jin, Hualing Mi.