Four synthetic manganese complexes in which Mn atoms have different coordination environments and valence states were used to reconstitute water-oxidizing complex (WOC) in Mn-depleted photosystem 2 preparations. Three Mn-complexes restored a significant rate of electron transfer and oxygen evolution except one complex in which Mn atom ligated to the O-atoms within the ligands by covalent linkage. The effect of coordination environment of the Mn-atom within the Mn-complexes on their efficiencies in reconstituting the electron transport and oxygen evolution was analysed. and G. Y. Chen ... [et al.].
After SO2 fumigation, Quercus acutissima and Pinus densiflora maintained high net photosynthetic rate (PN) and did not show visible symptoms of damage. In contrast, Populus alba×glandulosa and Acanthopanax sessiliflorus had significantly reduced PN and showed visible necrosis. and S. Y. Woo ... [et al.].
The effects of 2-chloroethyltrimethylammonium chloride (CCh), 2-ethyltrimethylammonium chloride (Ch), and acetylcholine chloride (ACh) at concentrations of 1 µM - 5 mM and of red radiation (R) pulse on growth, greening, and formation of the photosynthetic apparatus in etiolated wheat seedlings (Triticum aestivum L. cv. Moskovskaya-35) were examined. A short-term application of cholines and R pulse stimulated the first leaf growth and its appearance from coleoptile, and inhibited the coleoptile growth. The effects of cholines were observed during 96 h after the treatment of 4-d-old seedlings and depended on the type and the concentration of cholines. CCh, Ch, and R were also stimulators of greening and increased the photosynthetic activity, whereas ACh did not influence the process of greening. Joint effects of R with cholines on the growth and photomorphogenesis were greater than the individual ones, whereas far-red (FR) radiation decreased the influence of cholines. Thus phytochrome may modify the effects of cholines in the processes of growth and greening. and E. F. Kobzar, V. D. Kreslavskiï, E. N. Muzafarov.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675-750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675-710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated. and M. R. Amirjani, C. Sundqvist.
Net photosynthetic rate (PN) measured at elevated CO2 concentration (Ce), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and nitrogen (N) content in rice leaves decreased significantly after exposure to long term Ce. The reduction in PN, Rubisco, and leaf N at Ce was similar for the last fully expanded leaf blade (LFELB) and expanding leaf blade (ELB). Spatial leaf N content in the ELB was highest in the zone of cell division, sharply declined as cell expansion progressed and gradually increased with cell maturation. Maximum reduction in spatial leaf N and Rubisco content was found at Ce only within cell expansion and maturation zones. The spatial leaf N content correlated well with the amount of Rubisco synthesized during leaf expansion, suggesting that N deposition into the expanding leaf blade may be the key for Rubisco synthesis and possibly photosynthetic acclimation to Ce. and S. Seneweera.
The microalga Haematococcus pluvialis is a biotechnologically important microorganism producing a ketocarotenoid astaxanthin. Haematococcus exists either as metabolically active vegetative cells with a high chlorophyll content or astaxanthin-rich haematocysts (aplanospores). This microalga featuring outstanding tolerance to a wide range of adverse conditions is a highly suitable model for studies of freezing tolerance in phototrophs. The retention of H. pluvialis cell viability after freezing-thawing is ascribed to elevated antioxidant enzyme activity and high ketocarotenoid content. However, we report that only haematocysts characterized by a lower photosynthetic activity were resistant to freezing-thawing even without cryoprotectant addition. The key factors of haematocyst freezing tolerance were assumed to be a low water content, rigid cell walls, reduction of the membranous structures, photosynthesis downregulation, and low chlorophyll content. Collectively, viability of Haematoccus after freezing-thawing can be improved by forcing the transition of vegetative cells to freeze-tolerant haematocysts before freezing., K. Chekanov, S. Vasilieva, A. Solovchenko, E. Lobakova., and Obsahuje bibliografii
Measurements of reflectance in visible and near-infrared spectral regions were made on detached leaves of two crop species of different leaf morphology, structure, and water content (peanut and wheat) throughout progressive desiccation. Relative water content (RWC) was well correlated with water index (WI) but even better with the ratio of WI and normalized difference vegetation index. RWC was also significantly correlated with structural independent pigment index indicative of carotenoids/chlorophyll ratio. New indication is thus provided to assess leaf water content and apply simple and fast radiometric techniques for plant water stress management. and J. Peñuelas, Y. Inoue.
We characterized the photosynthetic growth of wild-type (WT) and QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 grown in a photobioreactor under medium-intensity [~70 μmol(photon) m-2 s-1] and high-intensity [~200 μmol(photon) m-2 s-1] light conditions. Photosynthetic growth rate (the exponential phase) increased about 1.1-1.2 fold for the A16FJ, S28Aβ, and V32Fβ mutant compared with WT cells under medium-intensity light and about 1.2-1.3 fold under high-intensity light. Biomass production increased about 17-20% for A16FJ and S28Aβ mutant cells as compared with WT cells under medium-intensity light and about 14-17% for A16FJ and V32Fβ mutant cells under high-intensity light. The greater photosynthetic growth rate and biomass production of these QC-site mutant cells could be attributed to the increased photosynthesis efficiency and decreased dissipation of wasteful energy from phycobilisomes in mutants vs. WT cells. Our results support that manipulation of photoprotection may improve photosynthesis and biomass production of photosynthetic organisms., J.-Y. Huang, N.-T. Hung, K.-M. Lin, Y.-F. Chiu, H.-A. Chu., and Obsahuje bibliografické odkazy
Regulation mechanism of excitation energy transfer between phycobilisomes (PBS) and the photosynthetic reaction centres was studied by the state transition techniques in PBS-thylakoid membrane complexes. DCMU, betaine, and N-ethylmaleimide were applied to search for the details of energy transfer properties based on the steady fluorescence measurement and individual deconvolution spectra at state 2 or state 1. The closure of photosystem (PS) 2 did not influence on fluorescence yields of PS1, i.e., energy could not spill to PS1 from PS2. When the energy transfer pathway from PBS to PS1 was disturbed, the relative fluorescence yield of PS2 was almost the same as that of PS2 in complexes without treatment. If PBSs were fixed by betaine, the state transition process was restrained. Hence PBS may detach from PS2 and become associated to PS1 at state 2. Our results contradict the proposed "spill-over" or "PBS detachment" models and support the mobile "PBS model". and Ye Li ... [et al.].