In this paper a comparison of methods for estimating rainfall-runoff model parameters in ungauged basins based on geographical location are presented. As a pilot basin the Hron River basin in Slovakia with an available daily flow, precipitation and air temperature time series needed for calibration to obtain model parameter values in subcatchments was selected. The rainfall-runoff model was calibrated using a daily time step at 23 subcatchments. The Nearest Neighbour, Lumped Basin and Best Similarity Index methods were used to transfer the model parameters from the gauged to ''ungauged'' subcatchments. Finally, the effectiveness of the estimation method for ungauged basins was tested by comparing the model simulations to observed hydrographs and computing the Nash-Sutcliffe optimization criterion. The results were finally compared, and the best method was recommended for practical application by estimating of the rainfallrunoff model parameters in an ungauged catchment in this region. and V štúdii sú prezentované výsledky nepriamych metód odhadu parametrov zrážkovo-odtokového modelu na povodiach bez priamych hydrologických pozorovaní, ktoré sú založené na geografickej polohe povodí. Povodie Hrona bolo vybrané ako pilotný región s 23 čiastkovými povodiami, ktoré mali dostupné časové rady pozorovaní priemerných denných prietokov, zrážok a teploty vzduchu, potrebné na kalibráciu modelu. Zrážkovo-odtokový model bol v týchto podpovodiach nakalibrovaný na údajoch s denným časovým krokom. Následne boli použité na regionalizáciu parametrov modelu metódy Nearest Neighbour (Metóda najbližšieho suseda), Lumped Basin (Metóda sústredeného povodia) a Best Similarity Index methods (Metóda najlepšej podobnosti). Kvalita regionalizačných metód sa overovala pomocou optimalizačného kritéria Nash-Sutcliffe. Najlepšie výsledky boli dosiahnuté Metódou najlepšej podobnosti, ktorá môže byť v praxi odporúčaná na odhad parametrov zrážkovo-odtokového modelu na testovanom povodí.
As to be able to draw up outlook development plans of the integrated water management it is required to define and know much more hydrological parameters of subcatchments, as are available from measurements in outflow profiles of water courses. Thus, a continuous and significant task of hydrology i working out of estimation methods for evaluation of non-existing, or only sporadically monitored hydrologic parameters in selected profiles of water courses. One of the way how to obtain required data is regionalization. The ''regional analysis'' focused in a given territory on elucidation of variations of hydrological regularities (laws). ''Regionalization'' implies interpolation of information, available in given monitoring stations, to the whole concerned territory. and Perspektívne rozvojové plány integrovaného vodného hospodárstva vyžadujú znalost väcšieho množstva hydrologických parametrov ciastkových povodí, než nám poskytujú pozorovania vo vodomerných profiloch tokov. Preto je trvalou úlohou hydrológie vypracovanie metód odhadov pre hodnotenie chýbajúcich alebo občasne pozorovaných hydrologických parametrov vo zvolených profiloch vodných tokov. Jednou z ciest k získaniu potrebných údajov je regionalizácia. Pod ''regionálnou analýzou'' sa rozumie postup, ktorý sa na danom území zaoberá objasnením zákonitostí zmien hydrologických parametrov. Pod ''regionalizáciou'' sa rozumie interpolácia informácií, ktoré sú k dispozícii v daných uzloch monitorovania, na celé záujmové územie.
There is an emerging challenge within water resources on how, and to what extent, borrowing concepts from landscape ecology might help re-define traditional concepts in hydrology in a more tangible manner.
A stepwise regression model was adopted in this study to assess whether the time of concentration of catchments could be explained by five landscape structure-representing metrics for land use/land cover, soil and geological patches, using spatial data from 39 catchments.
The models suggested that the times of concentration of the catchments could be predicted using the measures of four landscape structure-representing metrics, which include contiguity index (r2 = 0.46, p ≤0.05), fractal dimension index (r2 = 0.51, p ≤0.05), related circumscribing circle (r2 = 0.52, p ≤0.05), and shape index (r2 = 0.47, p ≤0.05).
The models indicated that the regularity or irregularity in land use/land cover patch shape played a key role in affecting catchment hydrological response. Our findings revealed that regularity and irregularity in the shape of a given patch (e.g., urban and semi-urban, rangeland and agricultural patches) can affect patch functions in retarding and/or increasing flow accumulation at the catchment scale, which can, in turn, decrease or increase the times of concentration in the catchments.