Post-WWII geopolitical changes in Indochina and Central & Eastern Europe drastically altered the international relationships of Czechoslovakia. Viet-nam became one of its partners. After the 1954 defeat of the French, the first Northern Vietnamese immigrants came to Czechoslovakia. However, after the Velvet Revolution of 1989 political agreements on cultural cooperation ended, and a return migration began. Nevertheless, the reconsolidation of democracy in the successor states of Czechoslovakia did not bring to an end the long established connection, and spontaneous individual migration started. Since then thousands of persons have come, and the Czech Republic remains one of the most desirable destinations for Vietnamese migrants. This article is the result of a qualitative survey conducted among pre-1989 returnees that was carried out in Vietnam from July 2010 to February 2011. The main task of the study is to frame the migration in a broader historical and political context, and show how the consequences and organized features of pre-1989 migration have shaped the perception of Czecho-slovakia and the returnees’ relationship with it.
Women/girls are most often portrayed in Czech and Slovak folk ballads in connection with love. In ballads expressing love between feudal lords and common women/girls we can observe different portrayals of women. In these ballads we find women/girls in the position of the feudal lord’s victims as well as in the position of the feudal lord’s wifes to be. Especially in Slovak ballads we can also find women in the position of feudal ladies, which makes up a special category of ballads. These ballads have been divided into three main groups based on the relationship of the woman/girl to the feudal lord: i. Ballads with one-sided love, (where the woman/girl doesn’t return the feudal lord’s love) ii. Ballads with mutual love and iii. Ballads portraying the feudal lady. Generally, the majority of these ballads reflect a historical-social phenomenon: the lower social position of women.
The study deals with the analyses of long-term snow measurements performed in the top-parts of the Jizera Mts. The homogenity of the measured data and the relationship between the snow cover parameters and elevation are tested. The main task is to determine the amount of snow sotrage in forest based on the measurements in open areas. It was proved that: i) the relationships can be defined by means of simple linear regression, ii) the resulting equations differ during the winter season depending on snow accumulation and snow melting periods respectively. The results re the first step in the research which will continue with analyses from other sites in Jizera mountains and new established measurements in the selected climatological stations. and Článek se zabývá analýzou sněhoměrných měření prováděných dlouhodobě ve vrcholových partiích Jizerských hor. Testována je homogenita naměřených dat a závislost parametrů sněhové pokrývky na nadmořské výšce. Jádrem práce je však zjišťování vztahů pro výpočet sněhových zásob v lesním prostředí na základě měření z volných prostranství. Bylo prokázáno, že i)tyto převodní vztahy lze odvodit pomocí jednoduché lineární regrese, ii)výsledné rovnice se liší během zimního období - pro období akumulace sněhové pokrývky jsou jiné než pro období tání. Výsledky jsou prvním krokem výzkumu, který bude pokračovat analýzami dalších profilů v Jizerských horách a nově zaváděných měření na souboru vybraných klimatických stanic.
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.