Excessive daytime sleepiness (EDS) is, in its consequences, a major
problem for the patient and for the society. EDS is mainly caused by night-time sleep disorders, in particular: the sleep apnoea syndrome (SAS) and periodic limb movements in sleep (PLMS). Our study was designed for finding out a) if there is a correlation between the gravity of the two conditions and the degree of EDS in patients with SAS and those with SAS and PLMS combined, and b) if EDS in the SAS+PLMS group is greater than in patients with the SAS alone. 35 patients with SAS and 10 with SAS+PLMS were examined using nocturnal polysomnography (PSG) and the multiple sleep latency test (MSLT).
As for SAS, no correlation was found between EDS and the gravity of the condition. On the other hand, PLMS was found correlated to the mean sleep latency value. A correlation between the gravity of the disease and the reduced TST, SE and the sleep stages under study was corroborated for both groups. In addition, both conditions were found to interfere with the sleep architecture more than the SAS alone. This noctural sleep disturbance, though, would stop short of raising the mean sleep latency tested in the MLST. Correlations were found in SAS between the age and 2NREM latency and between the latter and average sleep latency. In the MSLT, the groups showed no difference as to the mean sleep latencies.
The aim of this study was to determine whether excessive oxygen uptake (V.o2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak V.o2, respectively. V.o2 kinetics above zero watts was obtained by subtracting V.o2 at zero watts of previous exercise (ΔV.o2). ΔV.o2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the ΔV.o2 applicable to heavy exercise. The difference between ΔV.o2 in heavy exercise and ΔV.o2 estimated from the value of moderate exercise was obtained. The obtained V.o2 was defined as excessive V.o2. The time constant of excessive V.o2 during exercise (1.88±0.70 min) was significantly shorter than that during recovery (9.61±6.92 min). Thus, there was excessive V.o2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery., T. Zano, T. Yunoki, R. Matsuura, T. Arimitsu, T. Kimura., and Obsahuje bibliografii a bibliografické odkazy
Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed., D. Marešová, I. Valkounová, K. Jandová, J. Bortelová, S. Trojan., and Obsahuje bibliografii
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1. and J. Goc ... [et al.].
We present a chlorophyll fluorometer module system which adapts the intensity to the individual leaf sample by adjusting the quantum flux density of the excitation light so that the fluorescence signal is kept constant. This is achieved by means of a feedback power adjustment of the fluorescence exciting laser diode. Thus, the intensity of the excitation light is adapted to the actual need of a particular sample for quantum conversion without applying exaggeratedly high quantum flux density. We demonstrate the influence of the initial laser power chosen at the onset of irradiation and kept constant during fluorescence rise transient within the first second. Examples are shown for measuring upper and lower leaf sides, a single leaf with different pre-darkening periods, as well as yellow, light green and dark green leaves. The novel excitation kinetics during the induction of chlorophyll fluorescence can be used to study the yield and regulation of photosynthesis and its related non-photochemical processes for an individual leaf. It allows not only to sense the present state of pre-darkening or pre-irradiation but also the light environment the leaf has experienced during its growth and development. Thus, the individual physiological capacity and plasticity of each leaf sample can be sensed being of high importance for basic and applied ecophysiological research which makes this new methodology both innovative and informative. and A. Barócsi ... [et al.].
Excitation kinetics based on feedback regulation of chlorophyll (Chl) fluorescence of leaves measured with the chlorophyll fluorometer, FluoroMeter Modul (FMM), are presented. These kinetics showed the variation of excitation light (laser power, LP) regulated by the feedback mechanism of the FMM, an intelligent Chl fluorometer with embedded computer, which maintains the fluorescence response constant during the 300-s transient between the dark- and light-adapted state of photosynthesis. The excitation kinetics exhibited a rise of LP with different time constants and fluctuations leading to a type of steady state. The variation of excitation kinetics were demonstrated using the example of primary leaves of etiolated barley seedlings (Hordeum vulgare L. cv. Barke) during 48 h of greening in the light with gradual accumulation of Chl and development of photosynthetic activity. The excitation kinetics showed a fast rise followed by a short plateau at ca. 30 s and finally a slow constant increase up to 300 s. Only in the case of 2 h of greening in the light, the curve reached a stable steady state after 75 s followed by a slight decline. The final LP value (at 300 s of illumination) increased up to 12 h of greening and decreased with longer greening times. The active feedback mechanism of the FMM adjusted the excitation light during the measurement to the actual photosynthetic capacity of the individual leaf sample. In this way, the illumination with excessive light was avoided. The novel excitation kinetics can be used to characterize health, stress, disease, and/or product quality of plant material., C. Buschmann ... [et al.]., and Obsahuje bibliografii
This paper presents the procedure for designing electromagnetic bladed wheel excitation. This procedure comes from phase-synchronization of multiple electromagnets distributed around the wheel with a movement of the blade to obtain its resonant vibration. This procedure can be used with merit for dynamic tests of inter-blade couplings. The verification was performed on the tested wheel using two-point electromagnetic excitation of blades under rotation. and Obsahuje seznam literatury
The present status of research on the generation of spiral patterns in the responsive density wave theory is discussed. The latter is based on a conjecture of symmetry breaking in the equations of motion of stellar orbits in differentially rotating stellar disks by an oval perturbation growing with time. Analytical approaches based on first-order epicyclic approximation as well as computer experiments are performed to investigate the consequences of this working hypothesis.