Sand burial is a ubiquitous disturbance that influences the ecological and hydrological properties of moss crusts in many sandy desert areas. There is little available information regarding the effect of sand burial on the water repellency (WR) of moss crusts in desert areas. Therefore, this study evaluated the effects of sand burial (sand depths of 0 (control), 0.5, 1, 2, 4 and 10 mm) followed by three simulated precipitation regimes (through applying 4 and 6 mm, 2 and 3 mm, and 1 and 1.5 mm of distilled water at 8-day intervals in spring and autumn, respectively) on the WR of a widespread moss crust dominated by Bryum argenteum Hedw. in a revegetated area of the Tengger Desert, China. The results showed moss crust WR remained subcritical during the whole experiment, and that it considerably decreased immediately after sand burial, even though the values of WR were significantly higher in autumn than those in spring under the same treatment (p < 0.05). Furthermore, the depth threshold (TD) values for sand burials that reduced WR to zero were 1 and 2 mm in spring and autumn, respectively. After a recovery period of nearly one-season (72 days), the WR of the moss crust significantly increased (p < 0.05). In addition, sand burial had two separate effects on moss crust WR. Specifically, shallower sand burial (burial depth less than 0.5 mm) increased moss crust WR, whereas deeper sand burial (burial depth exceeds 0.5 mm) decreased it. The TD values also significantly increased to 2 and 4 mm in spring and autumn, respectively. These findings about the effects of sand burial on moss crust WR provide additional information that can be used to better understand the influence of sand burial on moss crust colonization and maintenance in arid sandburial- stressed ecosystems, and to help explain why there are some contrasting viewpoints on biocrust WR.
Hillslope hydrology in agricultural landscapes is complex due to a variety of hydropedological processes and field management possibilities. The aim was to test if there are any differences in soil properties and water regime along the hillslope and to compare vineyard rows (vine) with inter-rows (grass) area for those properties. The study determined that there are significant differences in the contents of soil particle fractions, pH, and humus content along the slope (P < 0.0001), with lower confidence level in bulk density (P < 0.05). Differences between row and inter-row space were significant for the pH, humus, and silt content, but for sand and clay content, and bulk density differences were not determined. The study determined differences in soil water content among five slope positions (P < 0.0001), and between row and inter-row vineyard space (all with P < 0.05). Where in the upper slope positions (e. g., P1) soil water content was higher than on lower slope positions. Higher soil water content was observed at higher slope positions, associated with clay content. However, it can be concluded that the retention of moisture on the slope is more influenced by local-scale soil properties (primarily soil texture) and variability of the crop (row/inter-row) than the position on the slope.
An open channel flume with a central 180-degree bend with a rigid bed is designed to obtain a better understanding of the complex flow pattern around a T-shaped spur dike located in a sharp bend. The 3-dimensional velocities are measured by using an acoustic Doppler velocimetry under clear-water conditions. This study's primary objective is to compare variations of the mean flow pattern along a 180-degree bend with a variety of T-shaped spur dike lengths. In order to do so, parameters such as streamlines, the maximum velocity distribution, and the secondary flow strength under the influence of three T-shaped spur dike lengths will be analyzed and then compared with the case where no spur dikes are implemented. The results show that with the spur dike placed at the bend apex, the mean secondary flow strength at that range increases by approximately 2.5 times. In addition, a 67% increase in the length of the wing and web of the spur dike leads to a 27% growth in the mean secondary flow strength along the bend.
The aim of the study was to assess the possibility of using the empirical formulas to determine the roughness coefficient in gravel-bed streams, the bed slopes of which range from 0.006 to 0.047. Another aim was to determine the impact of taking into account the conditions of non-uniform flow on the application of these formulas and to develop the correlation relationships between the roughness coefficient and water surface slope and also between the roughness coefficient and friction slope in order to estimate the roughness coefficient n in gravel-bed streams. The studies were conducted in eight measuring sections of streams located in the Kraków-Częstochowa Upland, southern Poland. The roughness coefficient n0 for these sections was calculated from the transformed Bernoulli equation based on the results of surveys and hydrometric measurements. The values of n0 were compared with the calculation results obtained from fourteen empirical formulas presenting the roughness coefficient as a function of slope. The Lacey, Riggs, Bray and Sauer formulas were found to provide an approximate estimate of the n value, while the best roughness coefficient estimation results were obtained using the Riggs formula. It was also found that taking into account the non-uniform flow and using the friction slope in the formulas instead of the bed slope or water surface slope did not improve the estimated values of the roughness coefficient using the tested formulas. It was shown that the lack of differences in the RMSE and MAE error values calculated for the developed correlation equations between the roughness coefficient and the friction slope or with the water surface slope also indicate no influence of the assumed friction slope or water surface slope on the value of the estimated roughness coefficient.
This study presents the results of 32 laboratory experiments on local scour at a single pile and a 1 × 4 pile group for both uniform and non-uniform sediments under clear water conditions. The present study aims to evaluate the effects of different sediment beds made up of mixtures of sand and gravel (four-bed configurations) in d50 (1–3.5 mm) and gradation (1.4–3) ranges on scour depth for different flow discharges and flow depths. Further, the findings of the experiments are deployed to describe the effects of pile spacing and flow conditions on the local pier scour for both uniform and non-uniform bed granulometries. In addition, this study addresses the performance of some existing scourdepth predictors. Also, the corresponding results are suitable for validating the numerical models in local pier scour prediction importantly with non-uniform sediments. In summary, the results show that effects of sediment gradation dampen with increasing flow shallowness. Furthermore, the maximum scour depth at pile groups generally increases as pile spacing decreases for uniform sediments, whereas the mentioned trend was not observed for non-uniform sediments for the same flow and sediment conditions. Moreover, the experimental results revealed that bed sediment gradation is a controlling factor in the pile’s scour. Thus, the existing scour depth predictions could be highly improved by considering sediment gradation in the predictions. Finally, the conclusions drawn from this study provide crucial evidence for the protection of bridge foundations not only at the front pile but also at rear piles.
CO2 injection is a well-known Enhanced Oil Recovery (EOR) technique that has been used for years to improve oil extraction from carbonate rock and other oil reservoirs. Optimal functioning of CO2 injection requires a thorough understanding of how this method affects the petrophysical properties of the rocks. We evaluated pore-scale changes in these properties, notably porosity and absolute permeability, following injection of CO2-saturated water in two coquina outcrop samples from the Morro do Chaves Formation in Brazil. The coquinas are close analogues of Presalt oil reservoirs off the coast of southern Brazil. The effects of carbonated water injection were evaluated using a series of experimental and numerical steps before and after coreflooding: cleaning, basic petrophysics, microtomography (microCT) imaging, nuclear magnetic resonance (NMR) analyses, and pore network modeling (PNM). Our study was motivated by an earlier experiment which did not show the development of a wormhole in the center of the sample, with a concomitant increase in permeability of the coquina as often noted in the literature. We instead observed a substantial decrease in the absolute permeability (between 71 and 77%), but with little effect on the porosity and no wormhole formation. While all tests were carried out on both samples, here we present a comprehensive analysis for one of the samples to illustrate changes at the pore network level. Different techniques were used for the pore-scale analyses, including pore network modeling using PoreStudio, and software developed by the authors to enable a statistical analysis of the pore network. Results provided much insight in how injected carbonated water affects the pore network of carbonate rocks.
Trapped or residual air (or gas) is known to affect the multiphase hydraulic properties of both soils and rocks. Trapped air is known to impact many vadose zone hydrologic applications such as infiltration and flow in the capillary fringe, but is also a major issue affecting recoverable oil reserves. Although many studies have focused on the relationship between porosity and trapped gas saturation (Sgt) in sandstones, far fewer studies have been carried out for carbonate rocks. This work aims to analyze the influence of porous media properties on trapped gas saturation in carbonate rocks. For this we used thirteen Indiana Limestone and Silurian dolomite rock samples from the USA, and several coquinas from the Morro do Chaves formation in Brazil. Pore size distributions were obtained for all samples using Nuclear Magnetic Resonance (NMR), and Mercury Injection Capillary Pressure (MICP) data from three of the samples to determine their pore throat size distributions. Additionally, 3D microtomography (microCT) images were used to quantify macropore profiles and pore connectivities. Results indicate a lower capacity of gas trapping in carbonate rocks in which micro- and mesopores predominate. Results also indicate that in carbonate rocks, pore size exerts a greater influence on the ability of gas trapping compared to pore connectivity, so that rocks with a predominance of macropores have greater capacity for gas trapping, even when the macropores are well interconnected. These findings show that pore characteristics very much affect the processes governing gas trapping in carbonate rocks, and indirectly the multiphase hydraulic properties and recoverable oil reserves of carbonate rock reservoirs.
Biochars, depending on the types of feedstocks and technological conditions of pyrolysis, can vary significantly in their properties and, therefore, it is difficult to predict biochar-induced effects on nitrous oxide (N2O) emissions from various soils, their physical properties and water availability. The objectives of this study were (1) to quantify effects of slow pyrolysis biochar (BC) and fast pyrolysis biochar (PYRO) on physical and hydro-physical properties of sandy soil (Haplic Arenosol) and clayey loam soil (Gleyic Fluvisol), and (2) to assess corresponding N2O emissions from these two soils. The study included a 63-day long laboratory investigation. Two doses of BC or PYRO (15 t ha–1 and 30 t ha–1) were applied to the soils in combination or without nitrogen fertilizer (NH4NO3, 90 kg N ha–1). The obtained results have shown a significant decrease in the bulk density of sandy soil after it was amended with either rate of BC or PYRO. Water retention capacity of the soils in all the treatments with BC or PYRO increased considerably although no changes was found in the soil water-filled pore space (WFPS) which was higher than 60%. BC was increasing N2O emission rates from the sandy soil treated with N fertilizer, and reducing N2O emission rates from the clayey loam soil treated with N fertilizer. PYRO was more efficient and was reducing N2O emissions from both fertilized soils, but for the sandy soil the reduction was statistically significant only at higher dose (30 t ha–1) of the biochar.
The Three Gorges Reservoir region suffers from severe soil erosion that leads to serious soil degradation and eutrophication. Interrill erosion models are commonly used in developing soil erosion control measures. Laboratory simulation experiments were conducted to investigate the relationship between interrill erosion rate and three commonly hydraulic parameters (flow velocity V, shear stress τ and stream power W). The slope gradients ranged from 17.6% to 36.4%, and the rainfall intensities varied from 0.6 to 2.54 mm·min–1. The results showed that surface runoff volume and soil loss rates varied greatly with the change of slope and rainfall intensity. Surface runoff accounted for 67.2–85.4% of the precipitation on average. Soil loss rates increased with increases of rainfall intensity and slope gradient, Regression analysis showed that interrill erosion rate could be calculated by a linear function of V and W. Predictions based on V (R2 = 0.843, ME = 0.843) and W (R2 = 0.862, ME = 0.862) were powerful. τ (R2 = 0.721, ME = 0.721) did not seem to be a good predictor for interrill erosion rates. Five ordinarily interrill erosion models were analyzed, the accuracy of the models in predicting soil loss rate was: Model 3 (ME = 0.977) > Model 4 (ME = 0.966) > Model 5 (ME = 0.963) > Model 2 (ME = 0.923) > Model 1 (ME = 0.852). The interrill erodibility used in the model 3 (WEPP) was calculated as 0.332×106 kg·s·m–4. The results can improve the precision of interrill erosion estimation on purple soil slopes in the Three Gorges Reservoir area.