In a previous study, the topsoil and root zone ASCAT satellite soil moisture data were implemented into three multi-objective calibration approaches of the TUW hydrological model in 209 Austrian catchments. This paper examines the model parametrization in those catchments, which in the validation of the dual-layer conceptual semi-distributed model showed improvement in the runoff simulation efficiency compared to the single objective runoff calibration. The runoff simulation efficiency of the three multi-objective approaches was separately considered. Inferences about the specific location and the physiographic properties of the catchments where the inclusion of ASCAT data proved beneficial were made. Improvements were primarily observed in the watersheds with lower slopes (median of the catchment slope less than 15 per cent) and a higher proportion of farming land use (median of the proportion of agricultural land above 20 per cent), as well as in catchments where the runoff is not significantly influenced by snowmelt and glacier runoff. Changes in the mean and variability of the field capacity parameter FC of the soil moisture regime were analysed. The values of FC decreased by 20 per cent on average. Consequently, the catchments’ water balance closure generally improved by the increase in catchment evapotranspiration during the validation period. Improvements in model efficiency could be attributed to better runoff simulation in the spring and autumn month. The findings refine recommendations regarding when hydrological modelling could consider satellite soil moisture data added to runoff signatures in calibration useful.
The goal of this study was to evaluate the effect of products from a municipal wastewater treatment plant on the H2O and CO2 effluxes from two soils. The net H2O and CO2 effluxes were measured at the surface of nine beds with two different soils (Cambisol and Arenosol) and two crops (maize or vegetables). Soils in some beds were amended with stabilized sewage sludge (bed with Cambisol and maize) or composted sewage sludge (two beds with Cambisol and both crops) or were irrigated with treated wastewater (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). Remaining beds were irrigated with tap water (two beds with Cambisol and both crops, and one bed with Arenosol and vegetable). While stabilized and composted sewage sludge positively affected the CO2 emission, the effect of treated wastewater was not confirmed. Different treatments had negligible effect on the water efflux, which was mainly affected by the plant canopy that influence the temperature of the soil surface. Statistical analyses showed that trends of the CO2 efflux with respect to various scenarios measured on different days changed during the season. No significant correlations were found between the average H2O and CO2 effluxes and measured soil properties.
It was shown that the use of biochar provides many benefits to agriculture by improving the whole complex of soil properties, including soil structure. However, the diverse range of biochar effects depends on its physicochemical properties, its application rates, soil initial properties etc. The impacts of biochar, mainly its reapplication to soils and its interaction with nitrogen in relation to water-stable aggregates (WSA) did not receive much attention to date. The aims of the study were: (1) to evaluate the effect of initial application (in spring 2014) and reapplication (in spring 2018) of different biochar rates (B0, B10 and B20 t ha–1) as well as application of biochar with N-fertilizer (40 to 240 kg N ha–1 depending on the requirement of the cultivated crop) on the content of WSA as one of the most important indicators of soil structure quality, (2) to assess the interrelationships between the contents of soil organic matter (SOM) and WSA. The study was conducted in 2017–2019 as part of the field experiment with biochar on Haplic Luvisol at the experimental station of SUA in Nitra, Slovakia. Results showed that initial application as well as reapplication of biochar improved soil structure. The most favorable changes in soil structure were found in N0B20B treatment (with biochar reapplication) at which a significantly higher content of water-stable macro-aggregates (WSAma) (+15%) as well as content of WSAma size fractions of > 5 mm, 5–3 mm, 3–2 mm and 2–1 mm (+72%, +65%, +57% and +64%, respectively) was observed compared to the control. An increase in SOM content, due to both, initial biochar application and its reapplication, significantly supported the stability of soil aggregates, while organic matter including humic substances composition did not.
The main objective of the paper was to propose and evaluate the performance of a regional approach to estimate CN values and to test the impact of different initial abstraction ratios. The curve number (CN) was analyzed for five Slovak and five Polish catchments situated in the Carpathian Mountains. The L-moment based method of Hosking and Wallis and the ANOVA test were combined to delineate the area in two homogenous regions of catchments with similar CN values. The optimization condition enabled the choice of the initial abstraction ratio, which provided the smallest discrepancy between the tabulated and estimated CNs and the antecedent runoff conditions. The homogeneity in the CN within the regions of four Slovak and four Polish catchments was revealed. Finally, the regional CN was proposed to be at the 50% quantile of the regional theoretical distribution function estimated from all the CNs in the region. The approach is applied in a group of Slovak and Polish catchments with physiographic conditions representative for the Carpathian region. The main benefit of introducing a common regional CN is the opportunity to apply this procedure in catchments of similar soil-physiographic characteristics and to verify the existing tabulated CN. The paper could give rise to an alternative way of estimating the CN values in forested catchments and catchments with a lack of data or without observations.
Although playing an important role in shaping the environment, the mechanisms responsible for runoff initiation and yield in arid and semiarid regions are not yet fully explored. With infiltration-excess overland flow, known also as Hortonian overland flow (HOF) taking place in these areas, the uppermost surface 'skin' plays a cardinal role in runoff initiation and yield. Over large areas, this skin is composed of biocrusts, a variety of autotrophs (principally cyanobacteria, green algae, lichens, mosses) accompanied by heterotrophs (such as fungi, bacteria, archaea), which may largely dictate the infiltration capability of the surface. With most biocrust organisms being capable of excreting extracellular polymeric substances (EPS or exopolymers), and growing evidence pointing to the capability of certain EPS to partially seal the surface, EPS may play a cardinal role in hindering infiltration and triggering HOF. Yet, despite this logic thread, great controversy still exists regarding the main mechanisms responsible for runoff generation (runoff initiation and yield). Elucidation of the possible role played by EPS in runoff generation is the focus of the current review.
The role of stony soils in runoff response of mountain catchments is rarely studied. We have compared simulated response of stony soils with measured catchment runoff for events caused by rains of small and high intensities in the mountain catchment of the Jalovecký Creek, Slovakia. The soil water response was simulated for three sites with stoniness 10–65% using the Hydrus-2D single porosity model. Soil hydraulic parameters employed in the modelling, i. e. the saturated hydraulic conductivity and parameters of the soil water retention curves, were obtained by two approaches, namely by the Representative Elementary Volume approach (REVa) and by the inverse modelling with Hydrus-1D model (IMa). The soil water outflow hydrographs simulated by Hydrus-2D were compared to catchment runoff hydrographs by analysing their skewness and peak times. Measured catchment runoff hydrographs were similar to simulated soil water outflow hydrographs for about a half of rainfall events. Interestingly, most of them were caused by rainfalls with small intensity (below 2.5 mm/10 min). The REV approach to derive soil hydraulic parameters for soil water outflow modelling provided more realistic shapes of soil water outflow hydrographs and peak times than the IMa approach.
The decline in groundwater levels is a cause of concern in many regions of the world, including the Sand Ridge of Hungary. The causes of the regional depletion range from rising air temperatures, changes in precipitation, domestic and agricultural groundwater use and past amelioration and recent afforestation, including the effects of drilling for crude oil exploration. The relations between the decline, the soil water regime and groundwater recharge under existing aged forests remained unclear thus far. Based on our monitoring of groundwater and soil moisture we aim to clarify this interplay in a new experimental site on the hilltop of the Sand Ridge. We compared three land-uses: a 41-year-old black locust (Robinia Pseudoacacia) offshoot forest, an 83-year-old first generation black pine (Pinus nigra) forest, and a grassland control site. The observed differences in the soil moisture profiles and dynamics were connected to the use of water by the given type of vegetation. We indicated a connection between the disruption of the groundwater recharge and the loss of contact of the rooting system of the forests with the deepening of the unconfined aquifer. Even if the aged forests could locally contribute to the decline, we conclude that the decline at the hilltop site that may be more strongly driven by other regional factors.
The aim of the study was to evaluate the climate and geographic factors controlling the hydrological drought of the rivers located in the Upper Vistula catchment in the Polish Carpathians. Drought was identified based on the daily flow (based on water stage measered once a day at 6 UTC) series dating from between 1975 and 2019 at 49 gauging cross-sections. Four physico-geographical regions were identified in the Polish Carpathians and spatial variabilities of the basic drought characteristics were developed within these regions. Such spatial distributions were treated as maps indicating drought hazard areas in the region. In addition, an analysis was undertaken to study the seasonality of the start and end times of the drought (all in the multi-annual period), the longest duration of droughts, the droughts of the highest volume in multi-annual period, as well as the number of drought days. Multi-annual variability of the number of drought days was also analysed. The results suggest that droughts in the Polish Carpathians are events characteristic of summer and autumn, whereas in the Tatra Mountains and the Podhale region - of autumn and winter. The greatest hazard of a prolonged and highvolume drought occurs in the Podhale region and the Tatra Mountains, while the lowest hazard is observed in the Bieszczady Mountains and the eastern part of the studied area.
The main purpose of the research was to determine the conditions affecting ice phenomena, including the three-phase cycle of ice: expansion, retention and decay of the ice cover on selected rivers of the Baltic coastal zone in the Northern Poland (Przymorze region). The analysis has been elaborated for the years 1951–2010 against the backdrop of currently occurring climatic changes, with particular emphasis on the development and phase variability of the NAO. The article presents the impact of the variability in atmospheric circulation which has manifested in an increase in air temperature, over the last 20 years, on thermal conditions during winter periods in the South Baltic Coastal Strip. The increase in air temperature has contributed to an increase in the temperature of river waters, thus leading to a shortening of the duration of ice phenomena on rivers in the Przymorze region. The article also brings to light an increased occurrence of winter seasons classified as cool, and a disruption in the occurrence of periods classified as normal over the last 30 observed years. The research has demonstrated a significant dependence between the seasonal change in air temperature and the variability of thermal conditions of water, which has a direct impact on the variability of the icing cycle of rivers in the Przymorze region. The authors also show that the variability in forms of ice phenomena for individual river sections is determined by the local factors, i.e. anthropogenic activity, impact of urbanized areas or inflow of pollutants.
A three-dimensional numerical model was applied to simulate submerged spatial hydraulic jumps (SSHJ) downstream of a symmetric vent that discharges into a wider channel. Simulations were carried out for different aspect ratios of the vent, expansion ratios of vent width to downstream channel width, tailwater depth, and inlet Froude number. Depending on these factors, simulations indicated the formation of steady asymmetric SSHJ, oscillatory asymmetric SSHJ, and steady symmetric SSHJ, consistent with results of previous experimental studies. The model reproduced observed depth downstream of vent, jump length, and velocity profiles along channel centerline for steady symmetric SSHJ. For oscillatory asymmetric SSHJ, simulated oscillation frequencies had Strouhal numbers that varied with expansion ratio and ranged between 0.003 and 0.015. With piers downstream of the vent, oscillatory SSHJ continued to exhibit jet deflections when pier length was relatively short (≲0.2 of jump length) but became steady asymmetric for longer piers.