Active control of photosynthetic activities is important in plant physiological study. Although models of plant photosynthesis have been built at different scales, they have not been fully examined for their application in plant growth control. However, we do not have an infrastructure to support such experiments since current plant growth chambers usually use fixed control protocols. In our current paper, an open IoT-based framework is proposed. This framework allows a plant scientist or agricultural engineer, through an application programming interface (API), in a desirable programming language, (1) to gather environmental data and plant physiological responses; (2) to program and execute control algorithms based on their models, and then (3) to implement real-time commands to control environmental factors. A plant growth chamber was developed to demonstrate the concept of the proposed open framework.
Data mining animal of genomes has been used before to identify endoparasites, and may be a particularly useful tool to surpass some difficulties faced by studies in the marine environment. We detected a species of Sarcocystis Lankester, 1882, contamination in the sperm whale (Physeter catodon Linnaeus) reference genome available in the GenBank database. We identified and extracted multiple gene fragments and placed the sequences in a phylogenetic framework. Our results indicate that the sequences of Sarcocystis sp. found in the genome do not correspond to any currently described species, despite a few other similar sequences having been identified in fur seals (Pinnipedia) and another sperm whale. Including data from previous studies, we suggest there is enough evidence to support the occurrence of at least four species of Sarcocystis in marine mammals. We also demonstrate that the term "S. canis-like" has been used for samples not closely related to Sarcocystis canis Dubey et Speer, 1991.
During the last two decades, genotyping of African rodents has revealed important hidden diversity within morphologically cryptic genera, such as Rhabdomys. Although the distribution of Rhabdomys is known historically, its diversity has been revealed only recently, and information about the distribution range of its constituent taxa is limited. The present study contributes to clarifying the distribution of Rhabdomys taxa, primarily in southern Africa, and identifies gaps in our knowledge, by: 1) compiling the available information on its distribution; and 2) significantly increasing the number of geo-localised and genotyped specimens (n = 2428) as well as the localities (additional 48 localities) sampled. We present updated distribution maps, including the occurrence and composition of several contact zones. A long-term monitoring of three contact zones revealed their instability, and raises questions as to the role of demography, climate, and interspecific competition on species range limits. Finally, an analysis of external morphological traits suggests that tail length may be a reliable taxonomic trait to distinguish between mesic and arid taxa of Rhabdomys. Tail length variation in Rhabdomys and other rodents has been considered to be an adaptation to climatic (thermoregulation) and/or to habitat (climbing abilities) constraints, which has still to be confirmed in Rhabdomys.
We analyse water balance, hydrological response, runoff and snow cover characteristics in the Jalovecký Creek catchment (area 22 km2, mean elevation 1500 m a.s.l.), Slovakia, in hydrological years 1989–2018 to search for changes in hydrological cycle of a mountain catchment representing hydrology of the highest part of the Western Carpathians. Daily air temperature data from two meteorological stations located in the studied mountain range (the Tatra Mountains) at higher elevations show that the study period is 0.1°C to 2.4°C warmer than the climatic standard period 1951–1980. Precipitation and snow depth data from the same stations do not allow to conclude if the study period is wetter/drier or has a decreasing snow cover. Clear trends or abrupt changes in the analysed multivariate hydrometric data time series are not obvious and the oscillations found in catchment runoff are not coherent to those found in catchment precipitation and air temperature. Several time series (flashiness index, number of flow reversals, annual and seasonal discharge maxima, runoff coefficients) indicate that hydrological cycle is more dynamic in the last years of the study period and more precipitation runs off since 2014. The snow cover characteristics and climatic conditions during the snow accumulation and melting period do not indicate pronounced changes (except the number of days with snowfall at the Kasprowy Wierch station since 2011). However, some data series (e.g. flow characteristics in March and June, annual versus summer runoff coefficients since 2014) suggest the changes in the cold period of the year.
δ18O in precipitation at station Liptovský Mikuláš (about 8.5 km south from the outlet of the Jalovecký Creek catchment) remains constantly higher since 2014 that might be related to greater evaporation in the region of origin of the air masses bringing precipitation to the studied part of central Europe. Increased δ18O values are reflected also in the Jalovecký Creek catchment runoff. Seasonality of δ18O in the Jalovecký Creek became less pronounced since 2014. The most significant trends found in annual hydrological data series from the catchment in the study period 1989–2018 have the correlation coefficients 0.4 to 0.7. These trends are found in the number of flow reversals (change from increasing to decreasing discharge and vice versa), June low flow, number of simple runoff events in summer months (June to September) and the flashiness index. The attribution analysis suggests that drivers responsible for the changes in these data series include the number of periods with precipitation six and more days long, total precipitation amount in February to June, number of days with precipitation in June to September and total precipitation in May on days with daily totals 10 mm and more, respectively. The coefficients of determination show that linear regressions between the drivers and supposedly changed data series explain only about 31% to 36% of the variability. Most of the change points detected in the time series by the Wild Binary Segmentation method occur in the second and third decades of the study period. Both hydrometric and isotopic data indicate that hydrological cycle in the catchment after 2014 became different than before.
The physical properties of tidal gravimetric instruments allow recording, not only tidal effects, but also waves generated by earthquakes. Three gravimetric stations with determined transfer functions and co-located seismic stations from the observatories in Western and Central Europe were selected for analysis. The observatories are equipped with almost all types of sensors available on the market, which allow for thorough analysis of earthquake recordings in the period range of 10–1000 s. In total, over 10,000 traces of worldwide earthquakes were investigated. The saturation levels of gravimeters as well as a correlation between the gravimetric and seismometric signals of an earthquake were carefully analysed. A simple processing scheme of gravimetric signal of earthquakes was adopted thanks to the probabilistic power spectral density analysis of continuous recordings. The detail analysis of transfer function of gravimeters allowed to define a period range when a sensitivity coefficient (calibration factor) and a time lag value only can be used to properly describe the properties of instruments. What’s more, it has been shown based on the calculated group-velocity dispersion curves of fundamental mode of Rayleigh waves, that the Earth’s mantle structure can be determined for greater depths from the recording of tidal gravimeters than from typical broad-band seismometers.
Toxoplasma gondii (Nicolle et Manceaux, 1908) is an obligate intracellular apicomplexan parasite and can infect warmblooded animals and humans all over the world. Development of effective vaccines is considered the only ideal way to control infection with T. gondii. However, only one live vaccine is commercially available for use in sheep and goats. Thus more effective antigenic proteins are searched for. In the present study we report a novel protein by secreted T. gondii termed Myc regulation 1 (MYR1). The physical and chemical characteristics, epitopes, hydrophilicity and functional sites of MYR1 were analysed by multiple bioinformatic approaches. The 3D models of MYR1 proteins were constructed and analysed. Furthermore, liner B-cell epitopes and T-cell epitopes of MYR1 protein and SAG1 were predicted. Compared to SAG1, MYR1 with good B-cell epitopes and T-cell epitopes had a potentiality to become a more successful vaccine against T. gondii. The bioinformatics analysis of MYR1 proteins could laid the foundation for further studies of its biological function experimentally and provide valuable information necessary for a better prevention and treatment of toxoplasmosis., Jian Zhou, Gang Lu, Shenyi He., and Obsahuje bibliografii
Study about the mechanical energy balance and the energy loss of 3-D turbulent flows in open-channels has its own complexities. The governing equation of the mechanical energy in turbulent flows has been previously known and includes turbulence parameters that their calculations or measurements are not easy. In this study, a form of the total mechanical energy equation that leads to a number of significant physical insights is analytically investigated, from which analytical relationships for the energy loss estimation in 3-D turbulent flows are defined. The effect of different turbulence parameters is reflected on the new relationships and analyzed by equalizations replacing unknown correlations with closure approximations using the numerical turbulence simulation. In order to investigate the application of the analytical relationships, numerical simulations are performed by using OpenFOAM software to solve the Navier-Stokes equations with the RSM turbulence model in open-channels with different geometries. Then, the contribution of the turbulence parameters to the total mechanical energy balance is evaluated in uniform and nonuniform turbulent flows and their difference is analyzed, that leads to identify the parameters affecting the friction and local losses. The results demonstrate that the magnitudes of the turbulent diffusion, the work done by the viscous stresses pertaining to the mean motion and the viscous diffusion of the turbulence energy are substantially smaller than the other terms of the total energy equation for turbulent flows in open-channels with different geometries, while the effect of the variations of the turbulence kinetic energy and the work done by the turbulence stresses, that has not been considered in the previous mechanical energy equations, is more important in complex flows. From a practical viewpoint, in order to study the details of the total mechanical energy balance and the energy loss in 3-D turbulent flows with the presence of the secondary currents, the proposed method can be useful.
Hlavným cieľom výskumnej štúdie bolo preskúmanie vzťahov medzi nerozhodnosťou, akademickou prokrastináciou a úzkosťou. Výskumu sa zúčastnilo 296 vysokoškolských študentov (M=21,06; SD=1,52). Údaje boli získané pomocou slovenskej verzie Škály nerozhodnosti, Layovej škály prokrastinácie pre študentov a Beckovho dotazníka úzkosti. Bol potvrdený stredne silný signifikantný vzťah medzi nerozhodnosťou a úzkosťou a silný signifikantný vzťah medzi nerozhodnosťou a akademickou prokrastináciou. Medzi akademickou prokrastináciou a úzkosťou bol zistený signifikantný, ale veľmi slabý vzťah. Na varianciu prokrastinácie pôsobí najmä nerozhodnosť, relatívny vplyv úzkosti je slabší. Nerozhodnosť je predikovaná v porovnateľnej miere prokrastináciou, ako i úzkosťou. Neboli preukázané štatisticky významné rodové rozdiely v miere nerozhodnosti a akademickej prokrastinácie. and The main aim of the research study was to explore the relationships between indecisiveness, academic procrastination and anxiety. The research sample consisted of 296 university students (mean age=21,06; SD=1,52), who completed the Slovak adaptations of the Indecisiveness Scale, the Lay's Procrastination Scale for Students and the Beck Anxiety Inventory. A significant moderate correlation was found between indecisiveness and anxiety, as well as a significant strong correlation between indecisiveness and academic procrastination. A significant but very weak relationship was found between academic procrastination and anxiety. Indecisiveness explained more variance in academic procrastination than anxiety. Indecisiveness was predicted by procrastination and anxiety to a similar degree. No gender differences were detected in the levels of indecisiveness or academic procrastination.
Recent molecular biology findings have shown that for the penetration of the SARS-CoV-2 coronavirus into host cells, a key role is played by protease serine 2, the activity of which is dependent on androgens. The important role of androgens is also evidenced by clinical observations that men in some age categories are infected by this novel coronavirus up to two times more frequently than women. In addition, men with androgenic alopecia tend to have more serious clinical courses, while men with androgen deprivation as a result of prostate cancer treatments tend to have milder courses. This is in line with the fact that preadolescent children are only rarely sickened with serious forms of SARS-CoV-2 infections. Even though these observations may be explained by other factors, many authors have hypothesized that lowered androgen levels and blocking their activity using anti-androgen medication may moderate the course of the viral infection in intermediately- to critically-affected cases. Clearly, it would be important for androgen deprivation to block not just gonadal androgens, but also adrenal androgens. On the other hand, low androgen levels are considered to be a risk factor for the course of SARS-CoV-2 infections, either because low androgen levels have a general effect on anaboliccatabolic equilibrium and energy metabolism, or because of the ability of testosterone to modify the immune system. It is not yet clear if infection with this novel coronavirus might induce hypogonadism, leading to undesirable side effects on male fertility.