a1_Survey work of batoid elasmobranchs in the eastern Atlantic and Indo-Pacific revealed multiple species of a new genus of cestode. Stillabothrium Healy et Reyda gen. n. (Rhinebothriidea: Escherbothriidae) is unique in its possession of an even number of non-medial longitudinal septa in the posterior portion of the bothridia, resulting in a series of loculi that are longer than wide (i.e. vertically oriented) and are arranged in columns. Five new species of Stillabothrium are described, S. ashleyae Willsey et Reyda sp. n., S. davidcynthiaorum Daigler et Reyda sp. n., S. campbelli Delgado, Dedrick et Reyda sp. n., S. hyphantoseptum Herzog, Bergman et Reyda sp. n., S. jeanfortiae Forti, Aprill et Reyda sp. n., and two species are formally transferred to the genus, S. amuletum (Butler, 1987) comb. n., and S. cadenati (Euzet, 1954) comb. n., the latter of which is redescribed. The species differ in the configuration of the other bothridial septa and in proglottid anatomy. Species of Stillabothrium were found parasitising a total of 17 species of batoid elasmobranchs of the genera Dasyatis Rafinesque, Glaucostegus Bonaparte, Himantura Müller et Henle, Pastinachus Rüppell, Rhinobatos Linck and Zanobatus Garman, including several host species that are likely new to science. A phylogenetic hypothesis based on Bayesian analysis of 1 084 aligned positions of the D1-D3 region of 28S rDNA for 27 specimens representing 10 species of Stillabothrium and two outgroup species supported the monophyly of Stillabothrium. These results also supported morphologically determined species boundaries in all cases in which more than one specimen of a putative species was included in the analysis. Host specificity appears to vary across species of Stillabothrium, with the number of host species parasitised by each species of Stillabothrium ranging from one to four., a2_The geographic distribution of species of Stillabothrium spans the eastern Hemisphere, including the eastern Atlantic (coastal Senegal) and several locations in the Indo-Pacific (coastal Vietnam, Borneo and Australia). In addition, Phyllobothrium biacetabulatum Yamaguti, 1960 is formally transferred into family Escherbothriidae, although its generic placement remains uncertain (species incertae sedis)., Florian B. Reyda, Claire J. Healy, Andrew R. Haslach, Timothy R. Ruhnke, Tara L. Aprill, Michael P. Bergman, Andrew L. Daigler, Elsie A. Dedrick, Illari Delgado, Kathryn S. Forti, Kaylee S. Herzog, Rebecca S. Russell, Danielle D. Willsey., and Obsahuje bibliografii
A new lecanicephalidean genus is erected for cestodes previously recognised as "New Genus 12" (Polypocephalidae) in a phylogenetic analysis of the interrelationship of members of this order. Examination of the cestode fauna of the mangrove whipray, Urogymnus granulatus (Macleay) (Myliobatiformes: Dasyatidae) from the Solomon Islands and northern Australia revealed the existence of specimens representing two new species, consistent in morphology with "New Genus 12." Corollapex gen. n. is unique among the 24 valid lecanicephalidean genera in its possession of an apical organ in the form of an external retractable central disk surrounded by eight concave muscular, membrane-bound pads and an internal heterogeneous glandular component. The two new species described herein, Corollapex cairae sp. n. (type species) and Corollapex tingoi sp. n., differ from one another in overall size and number of mature and immature proglottids, and are noted to demonstrate a differential distribution between mature and juvenile host individuals. Additional species diversity in the new genus, beyond C. cairae sp. n., C. tingoi sp. n., and "New Genus 12 n. sp. 1" of Jensen et al. (2016) is suggested. Corollapex gen. n. appears to be restricted to dasyatid hosts in the Indo-West Pacific region., Kaylee S. Herzog, Kirsten Jensen., and Obsahuje bibliografii
Transcellular trafficking in which various molecules are
transported across the interior of a cell, is commonly classified as
transcytosis. However, historically this term has been used
synonymously with transudation. In both cases transcellular
trafficking starts with the internalization of proteins or other
compounds on the basal or basolateral side of a cell and
continues by their transport across the interior to the apical pole
(or vice versa) where they are subsequently released. This allows
a cell to release products which are synthesized elsewhere. Here,
we discuss the common features of both transcytosis and
transudation, and that which differentiates them. It appears that
transcytosis and transudation are identical in terms of vesicular
import and endosomal sorting of cargo, but completely differ in
the re-secretion process. Specialized epithelial cells re-release
substantial quantities of the endocytosed material, and often also
a great variety. Some recent studies indicate that this is achieved
by non-canonical apocrine secretion rather than by the regular
vesicular mechanism of exocytosis, and takes place only on the
apical pole. This massive re-release of endocytosed proteins, and
potentially other compounds via the apocrine mechanism should
be considered as transudation, distinct from transcytosis.
The two-dimensional particle image velocimetry (PIV) data are inevitably contaminated by noise due to various imperfections in instrumentation or algorithm, based on which the well-established vortex identification methods often yield noise or incomplete vortex structure with a jagged boundary. To make up this deficiency, a novel method was proposed in this paper and the efficiency of the new method was demonstrated by its applications in extracting the twodimensional spanwise vortex structures from 2D PIV data in open-channel flows. The new method takes up a single vortex structure by combining model matching and vorticity filtering, and successfully locates the vortex core and draws a streamlined vortex boundary. The new method shows promise as being more effective than commonly used schemes in open-channel flow applications.
A new mite species Schizocoptes daberti sp. n. (Acariformes: Chirodiscidae) from Chrysochloris stuhlmanni Matsche (Afrosoricida: Chrysochloridae) from the Democratic Republic of the Congo is described. It differs from the closely related species S. conjugatus Lawrence, 1944 in both sexes by distance si-si at least twice longer than si-se (vs these distances are subequal in S. conjugatus); in females by setae cp 30-40 µm long (vs about 65 µm long), and in males by the very weakly sclerotised posterior parts of the hysteronotal shield (vs strongly sclerotised), setae d1 situated anterior to the hysteronotal shield (vs at the hysteronotal shield), and by opened coxal fields III (vs closed). An amended generic diagnosis, including description of immature stages, and a key to named species of Schizocoptes Lawrence, 1944 are provided., Andre V. Bochkov., and Obsahuje bibliografii
Myxobolus allami sp. n. is described from the intestinal wall of the silvery black porgy, Sparidentex hasta (Valenciennes), off Saudi Arabian coast of Arabian Gulf. Two of 20 examined fish were found to be infected with irregular-shaped plasmodia 3-8 mm long × 2-3 mm wide. Mature myxospores are subspherical to elliptical in the valvular view and oval in the sutural view, and are 11-13 (12) µm long, 7-8 (7.5) µm wide and 10-12 (10.8) µm thick. Spores have relatively thin valves and mostly (~ 72%) end with short caudal appendages of ~3 µm long. The spores also have two polar capsules, which are oval to elliptical and measure 5-7 (5.7) µm in length and 2-3 (2.7) µm in width. Polar filaments are coiled, with three turns. Transmission electron microscopy revealed that caudal appendages originated from the sutural edge at the posterior pole of the myxospore with density similar to that of its valves. The SSU rRNAgene sequence of the present species does not match any available sequences in GenBank. Phylogenetically, this species is sister to Myxobolus khaliji Zhang, Al-Qurausihy et Abdel-Baki, 2014 within a well-supported clade of Myxobolus-Henneguya with species infecting marine fishes. The combination of molecular data and morphological differences between this and other species of Myxobolus Bütschli, 1882 lead us to propose that the present form be established as a new species, M. allami. The present study also provides more evidence for the idea that caudal appendages cannot be reliably used to distinguish the species of the genera Myxobolus and Henneguya Thélohan, 1892.
When parasites invade paired structures of their host non-randomly, the resulting asymmetry may have both pathological and ecological significance. To facilitate the detection and visualisation of asymmetric infections we have developed a free software tool, Analysis of Symmetry of Parasitic Infections (ASPI). This tool has been implemented as an R package (https://cran.r-project.org/package=aspi) and a web application (https://wayland.shinyapps.io/aspi). ASPI can detect both consistent bias towards one side, and inconsistent bias in which the left side is favoured in some hosts and the right in others. Application of ASPI is demonstrated using previously unpublished data on the distribution of metacercariae of species of Diplostomum von Nordmann, 1832 in the eyes of ruffe Gymnocephalus cernua (Linnaeus). Invasion of the lenses appeared to be random, with the proportion of metacercariae in the left and right lenses showing the pattern expected by chance. However, analysis of counts of metacercariae from the humors, choroid and retina revealed asymmetry between eyes in 38% of host fish., Matthew T. Wayland, James C. Chubb., and Obsahuje bibliografii
Backward erosion piping is driven by seepage forces acting on the soil grains at the downstream end of the seepage path. A new device for the laboratory testing of backward erosion progression was developed and tested. The device consists of a plexiglass prism at which the seepage path has been predefined. The prism was equipped with an inflow consisting of gravel separated from tested sand by a strainer. The hydraulic gradient along the seepage pipe was observed by a set of piezometers and pressure cells, and the seepage discharge was measured volumetrically. The transported sediment was trapped in a vertical cone located downstream from the device. The progression of the seepage path, the piezometric heads and the trapped material was observed by two synchronous cameras. 15 trial tests have been carried out to date, and from these, the interim results are presented.
The sicklefin redhorse, Moxostoma sp. (Cypriniformes: Catostomidae), is an innominate imperiled catostomid endemic to the Hiwassee and Little Tennessee river basins, which has been restricted to a few tributaries of these systems by impoundments. During collections to propagate sicklefin redhorse for reintroduction, a myxozoan, described herein, was observed infecting sicklefin redhorse in the Little Tennessee River Basin, North Carolina. Myxobolus naylori Ksepka et Bullard sp. n. infects the stratum spongiosum covering the scales of sicklefin redhorse. Myxospores of the new species differ from all congeners by the combination of having a mucous envelope, intercapsular process, and sutural markings as well as lacking an iodinophilic vacuole in the sporoplasm. and A phylogenetic analysis of the 18S rDNA gene recovered the new species in a polytomy with Myxobolus marumotoi Li et Sato, 2014 and a clade comprised of species of Myxobolus Bütschli, 1882; Thelohanellus Kudo, 1933, and Dicauda Hoffman et Walker, 1973. Histological sections of infected sicklefin redhorse skin revealed myxospores within a plasmodium in the stratum spongiosum dorsal to scales, encapsulated in collagen fibres, and associated with focal erosion of scales directly beneath the plasmodium; in some instances, the scale was perforated by the plasmodium. The specificity of the new species to sicklefin redhorse may make it a useful biological tag to differentiate sicklefin redhorse from morphologically similar species. The new species is the first parasite reported from sicklefin redhorse, a species of concern to the United States Fish and Wildlife Service. No species of Myxobolus has been reported from species of Moxostoma in the Southeast United States. As it was observed that Myxobolus minutus Rosser, Griffin, Quiniou, Alberson, Woodyard, Mischker, Greenway, Wise et Pote, 2016 is a primary junior homonym of Myxobolus minutus Nemeczek, 1911, we propose the replacement name Myxobolus diminutus (Rosser, Griffin, Quiniou, Alberson, Woodyard, Mischker, Greenway, Wise et Pote, 2016).
Paraberrapex atlanticus sp. n. (Cestoda: Lecanicephalidea) is described from the spiral intestine of the angel shark Squatina guggenheim Marini from coastal waters off Buenos Aires Province, Argentina. Paraberrapex atlanticus sp. n. can be distinguished from the only species described in the genus, P. manifestus Jensen, 2001 in having cocoons 5-6 times longer with more eggs per cocoon, the extension of the uterine duct, the distribution of vitelline follicles, and the size and density of microtriches on the bothridial surfaces. The presence of P. atlanticus sp. n. in S. guggenheim confirms the specificity of Paraberrapex Jensen, 2001 for squatiniform sharks., Leonardo D. Mutti, Verónica A. Ivanov., and Obsahuje bibliografii