Dairy goats are often fed a high-concentrate (HC) diet to meet their lactation demands; however, long-term concentrate feeding is unhealthy and leads to milk yield and lactose content decreases. Therefore, we tested whether a buffering agent is able to increase the output of glucose in the liver and influence lactose synthesis. Eight lactating goats were randomly assigned to two groups: one group received a HC diet (Concentrate : Forage = 6:4, HG) and the other group received the same diet with a buffering agent added (0.2 % NaHCO3, 0.1 % MgO, BG) over a 19-week experimental period. The total volatile fatty acids and lipopolysaccharide (LPS) declined in the rumen, which led the rumen pH to become stabile in the BG goats. The milk yield and lactose content increased. The alanine aminotransferase, aspartate transaminase, alkaline phosphatase, pro-inflammatory cytokines, LPS and lactate contents in the plasma significantly decreased, whereas the prolactin and growth hormone levels increased. The hepatic vein glucose content increased. In addition, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6- phosphatase (G6PC) expression in the liver was significantly up-regulated. In the mammary glands, the levels of glucose transporter type 1, 8, 12 as well as of sodium-glucose cotransporter 1 increased. Cumulative buffering agent treatment increased the blood concentrations of glucose via gluconeogenesis and promoted its synthesis in the liver. This treatment may contribute to the increase of the milk yield and lactose synthesis of lactating goats., L. Li, M. L. He, Y. Liu, Y. S. Zhang., and Seznam literatury
Colonic mucosal protection is provided by the mucus gel, mainly composed of mucins. Several factors can modulate the formation and the secretion of mucins, and among them butyrate, an end-product of carbohydrate fermen tation. However, the specific effect of butyrate on the various colonic mucins, and the consequences in terms of the mucus layer thickness are not known. Our aim was to determine whether butyrate modulates colonic MUC genes expression in vivo and whether this results in changes in mucus synthesis and mucus layer thickness. Mice received daily for 7 days rectal enemas of butyrate (100 mM) versus saline. We demonstrated that butyrate stimulated the gene expression of both secreted (Muc2) and membrane-linked (Muc1, Muc3, Muc4) mucins. Butyrate especially induced a 6-fold increase in Muc2 gene expression in proximal colon. However, butyrate enemas did not modify the number of epithelial cells containing the protein Muc2, and caused a 2-fold decrease in the thickness of adherent mucus layer. Further studies should help understanding whether this last phenomenon, i.e. the decrease in adherent mucus gel thickness, results in a diminished protective function or not., E. Gaudier ... [et al.]., and Obsahuje seznam literatury
Pro hloubavého čtenáře jsou v hlavní části článku shromážděna v historické posloupnosti fakta k zamyšlení se nad výše položenou otázku. V roce 2016 uplyne 170 roků od jednoho z nejvýznamněších činů lidského intelektu v historii nebeské mechaniky - objevu planety Neptun. Udál se za neobvyklých a částečně i dramatických okolností na různých mistech Evropy. Proběhl zásluhou úspěšného propojení matematicky obtížných a časově náročných výpočtů ve Francii, Anglii a krátkého pozorování v Německu., The discovery of planet Neptune is one of the greatest events in the history of celestian mechanics. Le Verrier and simultaneously Adam applied inverse perturbation theory to the problem of Uranus, whose irregularities in motion could be used for determination of the orbit and mass of a yet unknown planet. These very complicated computations were successfully finished in summer 1846. Neptune was discovered by Johann Galle using le Verrier‘s predictions in September of the same year proving that the mathematical methods and numerical calculations were not fundamentally flawed. Therefore, dicovery of Neptune cannot be considered as accidental., and Vladimír Štefl.