The effects of exogenous sodium nitroprusside (SNP), as nitric oxide donor, and spermidine (Spd) on growth and photosynthetic characteristics of Bakraii seedlings (Citrus reticulata x Citrus limetta) were studied under NaCl stress. In citrus plants, SNP- and Spd-induced growth improvement was found to be associated with reduced electrolyte leakage, malondialdehyde, hydrogen peroxide content, and leaf Na+ and Cl- concentration. However, we found increased leaf Ca2+, Mg2+, and K+ concentrations, relative water content, chlorophyll fluorescence parameters, antioxidant enzyme activities, such as ascorbate peroxidase, catalase, superoxide dismutase and peroxidase, as well as higher photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate under saline regime. Foliar application of SNP and Spd alone mitigated the adverse effect of salinity, while the combined application proved to be even more effective., D. Khoshbakht, M. R. Asghari, M. Haghighi., and Obsahuje bibliografii
In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L-1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m-2 s-1. Photosynthetic electron transport chain capacity between QA-QB, QA-PSI acceptor, and QB-PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L-1 and declining with 10.0 mg(GeO2) L-1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L-1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L-1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities., Z. B. Wang, Y. F. Wang, J. J. Zhao, L. Ma, Y. J. Wang, X. Zhang, Y. T. Nie, Y. P. Guo, L. X. Mei, Z. Y. Zhao., and Obsahuje bibliografii
The ecophysiological function(s) and consequences of guttation, a phenomenon by which water is exuded by and accumulated as droplets along the leaf margins under high humidity in many plants that grow in wet soil, has been poorly studied and remains largely unknown. Thus, leaf gas exchange and chlorophyll fluorescence were examined, using two experimental approaches, in Alchemilla mollis plants under conditions that promoted guttation and those that prevented this phenomenon. Although results were variable, depending on the experimental approach, prevention of guttation effected reductions in photosynthesis and transpiration, as well as photochemical activity measured with fluorescence techniques. These findings lend partial support for a previously hypothesized function of guttation: prevention of excess water in leaves, yet they contradict those of several other studies. More work is required in order to adequately understand the function of guttation., Y.-C. Chen, T.-C. Lin, C. E. Martin., and Obsahuje bibliografii
The Tisza River Basin is an important area as it is a green corridor in which there are highly endangered habitats and a high level of biodiversity. The patterns in the species richness of invertebrates and the environmental conditions affecting these patterns are poorly studied in the grassy habitats in the lower reaches of the Tisza River Basin. The present study focuses on the effects of flooding, habitat and landscape features on the species richness of orthopterans at 24 grassland sites in two different landscapes. The relations between the explanatory variables and the pattern of diversity of orthopterans with different life-history traits were studied, using ordination and Generalized Linear Mixed Models. Although the influential factors for the different trait groups differed, we suggest that landscape features are the most important in shaping orthopteran assemblages, whereas habitat characteristics and flooding have comparatively little effect. Habitat characteristics affected only the non-xerophilous and Ensifera species and only the species richness of non-xerophilous orthopterans in flooded and non-flooded sites differed. We emphasize that even in countries where there are still considerable areas of high value natural grasslands, such as Hungary, non-protected meadows, linear grassy habitats (dikes, ditch banks, road verges, etc.) need more attention and should be given higher priority in the conservation of invertebrates., Attila Torma, Miklós Bozsó., and Obsahuje bibliografii
Water is a limited resource and is likely to become even more restricted with climate change. The aim of this study was to evaluate the effect of humic acid (HA) applications on photosynthesis efficiency of rapeseed plants under different watering conditions. Water stress strongly increased electron transport flux, probability that trapped excitation can move an electron into the electron transport chain beyond QA, and quantum yield of reduction of end electron acceptors at the PSI acceptor side. Application of HA decreased the values of these parameters to be similar to those of non-stress conditions. We found that, the application of HA improved plants net photosynthesis under water stress via increasing the rate of gas exchange and electron transport flux in plants., R. Lotfi, H. M. Kalaji, G. R. Valizadeh, E. Khalilvand Behrozyar, A. Hemati, P. Gharavi-Kochebagh, A. Ghassemi., and Obsahuje bibliografii
Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m-2 s-1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m-2 s-1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the
short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed., X. J. Xie, X. L. Wang, L. D. Lin, L. W. He, W. H. Gu, S. Gao, X. F. Yan, G. H. Pan, M. J. Wu, G. C. Wang., and Obsahuje seznam literatury
L-malate, a tricarboxylic acid cycle (TCA ) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue – blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK) , total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice., J. L. Wu, Q. P. Wu, J. M. Huang, R. Chen, M. Cai, J. B. Tan., and Obsahuje bibliografii a bibliografické odkazy
Facultative diapause in the wax moth, Galleria mellonella, occurs in the final larval instar. Application of juvenile hormone analogs (JHAs) to the larvae of this species has similar effects to diapause, in terms of prolonged development of the larval stages and the arrest in the metamorphosis of internal organs. Here, we focus on testes development and spermatogenesis at the end of larval development in G. mellonella, how they are affected by diapause induced by an environmental decrease in temperature to 18°C and the application of a JHA (fenoxycarb) to larvae. Because neither testis development nor spermatogenesis are described in detail for this species, we examined them in individuals not in diapause during the period from the last larval instar to the newly emerged adult and present a timetable of changes that occur in the development of testes in this species. These observations have increased the very limited data on the course of spermatogenesis in pyralid insects. We then used these data for comparative analysis of testes in larvae from two experimental groups: individuals in diapause and those treated with fenoxycarb. The results on the general morphology testes revealed obvious degenerative changes caused by fenoxycarb (but not by diapause), including testicular wall hypertrophy and disarrangement of testicular follicles. Moreover, treatment with fenoxycarb finally resulted in the disintegration of nearly all testicular cyst-containing germ cells at different stages of spermatogenesis, a situation never previously described in the literature. In contrast, the main effect of diapause on testes was merely the degeneration of spermatocytes in the proximal regions of the testicular follicles. Finally, the TUNEL analyses, revealed that the degenerative changes in germ cells were apoptotic in character in the testes of both individuals in diapause and fenoxycarb-treated males., Piotr Bebas, Bronislaw Cymborowski, Michalina Kazek, Marta Anna Polanska., and Obsahuje bibliografii
In this study, we investigated maximal quantum yield of PSII photochemistry(Fv/Fm),effective quantum yield of PSII photochemistry (ΦPSII), and nonphotochemical quenching (NPQ) of walnut (Juglans regia ‘Xinxin2’) leaves with different leaf-to-fruit ratios (LFRs). The results indicated that the increasing LFR increased the values of Fv/Fm, ΦPSII, and NPQ in leaves on the girdled shoot with one and two leaves, and decreased the values of Fv/Fm and ΦPSII in leaves on the girdled shoot with five leaves, whereas had no effect on the chlorophyll (Chl) fluorescence in leaves on the girdled shoot with three and four leaves. These results indicate that the effects of LFR on Chl fluorescence depend on a LFR range and show a transitional trend transition, and that excessive fruit load accelerates leaf senescence resulting in the destruction of the reaction center in PSII., C. F. Zhang, C. D. Pan, H. Chen., and Obsahuje bibliografii
Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m-2 s-1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (Pmax) expressed per biomass unit at 10 μmol(photon) m-2 s-1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of Pmax expressed per Chl unit at 145 μmol(photon) m-2 s-1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, Pmax) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII., S. Jodłowska, S. Śliwińska., and Obsahuje bibliografii