The kinetics of bacteriochlorophyll fluorescence in intact cells of the purple nonsulfur bacterium Rhodobacter sphaeroides were measured under continuous and pulsed actinic laser diode (808 nm wavelength and maximum 2 W light power) illumination on the micro- and millisecond timescale. The fluorescence induction curve was interpreted in terms of a combination of photochemical and triplet fluorescence quenchers and was demonstrated to be a reflection of redox changes and electron carrier dynamics. By adjustment of the conditions of single and multiple turnovers of the reaction center, we obtained 11 ms-1 and 120 μs-1 for the rate constants of cytochrome c23+ detachment and cyclic electron flow, respectively. The effects of cytochrome c2 deletion and chemical treatments of the bacteria and the advantages of the fluorescence induction study on the operation of the electron transport chain in vivo were discussed., G. Sipka, M. Kis, J. L. Smart, P. Maróti., and Obsahuje bibliografické odkazy
Významným fyziologickým parametrem živých buněk i řady jejich organel je membránový potenciál. K jeho sledování se často používá fluorescenčních sond, které se akumulují uvnitř buněk až do vyrovnání jejich intra- a extracelulárních elektrochemických potenciálů. Obsahem tohoto článku je přehled optických metod sloužících k tomuto účelu, jenž zahrnuje spektrofluometrii, proudovou cytometrii a konfokální mikroskopii a je prezentován jako průřez aktivitami biofyzikálního oddělení Fyzikálního ústavu UK na Matematicko-fyzikální fakultě UK., Jaromír Plášek, Dana Gášková., and Obsahuje seznam literatury
Patients treated for knee disorders were included in this study. They were examined clinically (Lequesne and Tegner scores) and by standard X-ray investigation. Patients underwent a surgical procedure, either arthroscopy or knee replacement. At the initial phase of surgery, a sample of cartilage was taken for laboratory examination. Progression of the disorder and the clinical examination was correlated with the actual state of the cartilage using a novel fluorescence approach. The intrinsic fluorescence of cartilages was shown as a suitable and sensitive method for detection of the actual state of cartilages because the correlation with X-ray examination and clinical status was found. Intrinsic fluorescence properties of cartilages from patients with chondropathy and osteoarthritis were described and found to be age-dependent. We also observed a higher concentration of advanced glycation end products due to inflammatory and/or degenerative processes in the cartilage. In addition, acute pathological changes due to diseases such as meniscal lesions or anterior cruciate ligament rupture caused a significant increase of formation of advanced glycation end products even in the group of young patients. In fact, such an observation could be crucial and important for the detection of knee conditions suspected of early meniscal and/or ACL lesions especially among young patients., M. Handl, E. Filová, M. Kubala, Z. Lánský, L. Koláčná, J. Vorlíček, T. Trč, M. Pach, E. Amler., and Obsahuje bibliografii a bibliografické odkazy
Aluminofluoride complexes (AlFx) form spontaneously in aqueous solutions containing fluoride and traces of aluminum ions and appear to act as phosphate analogs. These complexes have become widely utilized in laboratory investigations of various guanine nucleotide-binding proteins. Reflecting on many laboratory studies, a new mechanism of fluoride and aluminum action on the cellular level is being suggested. The long-term synergistic effects of these ions in living environment and their hidden danger for human health are not yet fully recognized., A. Strunecká, O. Strunecký, J. Patočka., and Obsahuje bibliografii
Jaromír Chalupský, Tomáš Burian, Michael Grisham, Věra Hájková, Scott Heinbuch, Krzysztof Jakubczak, Libor Juha, Tomáš Mocek, Peter Pira, Jiří Polan, Jorge J. Rocca, Bedřich Rus, Jaroslav Sobota, Luděk Vyšín. and Obsahuje seznam literatury
In the past decade, utilization of nanostructured materials has increased intensively in a wide range of applications. Titanium dioxide nanoparticles (TiO2 NPs), for instance, can be applied for the inactivation of various pathogens through photo-induced generation of reactive oxygen species. Although TiO2 NPs with high antimicrobial activity are of great importance, in practice, their phytotoxic effects have not yet been fully clarified. In this study, we investigated the potential phytotoxicity of TiO2 NPs on grapevine (Vitis vinifera L.) under field conditions. After foliar exposure, two particularly stress-sensitive parameters, photosynthetic function and the flavonol profile, were examined. Micro- and macroelement composition of the leaves was also studied by ICP-AES measurements. We found that TiO2 NPs significantly decreased the net CO2 assimilation and increased stomatal conductance, indicating metabolic (nonstomatal) inhibition of the photosynthesis. The lower electron transport rate and lower nonphotochemical quenching in treated leaves are indicative of diminished photoprotective processes., P. Teszlák, M. Kocsis, A. Scarpellini, G. Jakab, L. Kőrösi., and Obsahuje bibliografii