We deployed branch traps in an ash (Fraxinus) plantation to investigate how Agrilus planipennis behavior is associated with Fraxinus pennsylvanica condition and dispersal patterns. Data were collected from traps with or without the presence of beetle visual decoys, and from a yearly survey of exit holes. The traps were placed on trees that were either clearly declining, with most foliage arising from epicormic sprouting, or on apparently healthy trees, with little evidence of damage or decline. We calculated correlations of exit holes among neighboring tree rings and also between exit holes and male trap captures. The damaged trees the traps were hung upon had more cumulative exit holes observed than the corresponding healthy trees. However, there was otherwise no evidence that the experiment was biased by differences in exit hole patterns of the surrounding trees. Male captures were greater on decoy-baited traps than controls and this decoy effect was most clearly apparent late in the season when traps were placed on healthy trees. There were also patterns of correlations between male captures and exit hole numbers that may be indicative of short-range mate finding-and dispersal behaviors. Female captures were sparser, but were positively affected by decoys on healthy and declining trees early in the season. Thus, the results suggest that the placement of such traps on healthier trees will maximize detection, and the branch traps also show promise for further use in dispersal studies., Michael J. Domingue, Jennifer Berkebile, Kim Steiner, Loyal P. Hall, Kevin R. Cloonan, David Lance, Thomas C. Baker., and Obsahuje bibliografii
Aphis fabae and Myzus persicae (Hemiptera: Aphididae) are insect pests that damage sugar beet and bean crops. Both are responsible for losses in yield and transmission of viral diseases, and may be present on the same host at the same time. Three parasitoid species, Aphidius colemani, Lysiphlebus testaceipes and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) have the potential to be used as biological control agents against at least one of these species of aphids. As a first step prior to the implementation of a biological control program, our aim was to understand the host selection behaviour of the parasitoids, particularly when both aphids are present. We recorded the host acceptance (number of insertions of the ovipositor / number of antennal contacts), suitability (number of mummies / the number of insertions of the ovipositor) and emergence (number of adults emerging from mummies) of these three aphid parasitoids when parasitizing the two aphids. We also analyzed the effect of the host plant on the host preference of the parasitoid. Females of each parasitoid species (n = 15) were exposed to 20 aphids of A. fabae or M. persicae, or a mixture of these two species of aphids, for 15 min, on a leaf disc of each of the two host plants, sugar beet and bean. Higher host acceptance and suitability were recorded for A. colemani attacking both species of aphid: A. fabae (43 and 46%) and M. persicae (43 and 46%) on beet and bean plants respectively, compared to L. testaceipes and L. fabarum. L. testaceipes and L. fabarum showed a clear preference for A. fabae. L. fabarum accepted M. persicae on both plants only when it was mixed with A. fabae, probably due to a confusion effect. We found that the host plant played a significant role in host acceptance, host suitability. We conclude that A. colemani is the better of the three parasitoids studied for the biological control in bean, and particularly, sugar beet crops. and Loulou Albittar, Mohannad Ismail, Claude Bragard, Thierry Hance.
The influence of host intrapatch spatial distribution on parasitoid host acceptance behavior was investigated with Trichogramma principium parasitizing eggs of grain moth, Sitotroga cerealella. Single females were placed in Petri dishes, each containing 60 host eggs arranged either as a compact patch or partitioned into 60 or 12 clusters each consisting of 1 or 5 eggs, respectively. Partitioned patches provoked parasitization more often than compact patches. The percentage of ovipositing females (i.e., females parasitizing at least one of 60 host eggs) increased with the number of clusters, while it was independent of the intercluster distance over intervals of 2.5-15 mm. The mean number of eggs parasitized by ovipositing females during 48 h was almost independent of the host egg spatial pattern. As a result, the rate of parasitization was higher when the hosts were sparsely distributed within a patch than when they were aggregated., Nataliya D. Voinovich, Taisiya Ya. Umarova, Sergey Ya. Reznik, and Lit
Cercariae of Cotylurus flabelliformis (Faust, 1917) were individually tested in 6 experiments for evidence of chemoattraction to snail hosts, host-speeificity, and rate of dispersal. Five species of snails were tested: Lymnaea stagnalis appressa Say, 1821, Stagnatola eludes (Say, 1821), Physella gyrina (Say, 1821), Planorbella trivnlvis (Say, 1817), and Oxyloma retusum (Lea, 1834). The data substantiate that cercariae of C. flabelliformis have a chemo-positive attraction to undetermined diffusable substances from snails, show host-specificity, and do not attack the snail that produced them. Cercarial response time was significantly influenced by cercarial age (post-emergence), and duration of presence of snails. Newly emerged cercariae were most consistently chemo-positive to L. stagnalis and quickly located all snail species except the unnatural host O. retusum. Tests of 121 cercariae proved statistically significant in showing preferences for snail hosts. Cercarial dispersal experiments showed that C. flabelliformis cercariae can disperse rapidly but few located and penetrated lab-reared S. eludes at distances up to 1.2 m. The results are consistent with other studies which indicate that chemical gradients are used by cercariae to locate slow moving hosts and that cercariae must come into close proximity of snails before attraction occurs. The significance of these observations to the distribution of C. flabelliformis in the molluscan population is discussed.