Cíl: Korektní odvození přípustných limitů preciznosti pro správné nastavení regulačních diagramů a efektivní řízení interní kontroly kvality (IKK) v laboratorní praxi. Metodika: Aplikace 3-signální tabulky dle návrhu Haeckela a Wosnioka [1] pro výpočet přípustných limitů preciznosti z empirické biologické variability (CV E ) založené na referenčních intervalech a jejich následné použití pCV A v regulačních diagramech. Diskuse: Možnosti použití 3-signální tabulky [1]. Závěr: Varování před nesprávným použitím regulačních diagramů; správné odvození přípustných limitů mezilehlé preciznosti jako klíč pro efektivní použití regulačních diagramů a pro objektivní třídění jednotlivých laboratorních metod podle jejich kvality., Objective: Presentation an advanced method for deriving correct permissible precision limits which are required for the correct use of control charts, and for the effective internal quality control management (IQC) in a laboratory practice. Method: The 3-signal table application designed by Haeckel and Wosniok [1], which provides appropriate means to calcu - late the correct permissible precision limits (pCV A ) from the empirical biological variability (CV E ), based on reference intervals (RIs); the subsequent proper use of pCV A in the control charts. Discussion: Potential uses of the 3-signal table [1]. Conclusion: Warning against an improper use of the control charts; the correct method for deriving the permissible inter - mediate precision limits as the key ingredient for setting up effective control charts, which are a prerequisite for an objective classification of different laboratory methods according to their real quality, Ambrožová J., and Literatura
Cíl. Srovnání efektivní dávky a orgánové dávky na oční čočku při vyšetřeních mozku multidetektorovým CT přístrojem (MDCT) s nastavenou automatickou modulací proudu, provedené výpočetním algoritmem iterativní rekonstrukce v obrazovém prostoru (IRIS) a algoritmem filtrované zpětné projekce (FBP). Metoda. Z celkem 80 neakutních MDCT mozku s nastavením automatické proudové modulace bylo 40 provedeno protokolem založeným na IRIS a 40 dalších protokolem s FBP. Všechna vyšetření byla realizována na MDCT přístroji SOMATOM Definition AS+ (Siemens Healthcare, Forchheim, Německo). Efektivní dávka byla vypočtena z CT dávkového indexu (CTDIvol) a dose length product (DLP) v prostředí softwaru ImPACT. Orgánové dávky na oční čočku byly vypočteny z hodnot mAs aplikovaných v úrovni oční čočky. Obrazová a diagnostická kvalita rekonstruovaných obrazů byla subjektivně hodnocena dvěma zkušenými atestovanými radiology v zaslepeném porovnání. Bylo také provedeno kvantitativní statistické hodnocení úrovně obrazového šumu. Výsledky. TJ IRIS byla průměrná efektivní dávka na oční čočku 1,04 ± 0, 21 mSv, u FBP 1,53 ± 0,29 mSv, což představuje snížení o přibližně 32 % ve prospěch IRIS. Průměrná orgánová dávka byla u IRIS 26,9 ± 1, 9 mGy a u FBP 40,2 ± 3,2 mGy, což představuje redukci o 33,1 %. Při subjektivním porovnání vjemu kvality obrazu nebyl zjištěn významný rozdíl (p = 0,21). V rámci kvantitativního hodnocení úrovně šumu bylo zaznamenáno malé, ale již statisticky významné zvýšení na obrazech rekonstruovaných algoritmem IRIS (p <0,01). Závěr. Použití výpočetního algoritmu IRIS při MDCT vyšetření mozku umožňuje redukovat efektivní a orgánovou dávku zachycenou oční čočkou až přibližně o jednu třetinu při diagnosticky nevýznamném rozdílu v kvalitě zobrazení v porovnání s algoritmem FBP., Aim. To compare effective and organ radiation dose to the eye lens in multidetector CT (MDCT) examinations of the brain, utilising either iterative reconstruction in image space (IRIS) or filtered back projection (FBP) algorithm. Method. Of 80 non-acute brain MDCT examinations, 40 were performed with IRIS reconstruction algorithm and other 40 with FBP algorithm. All examinations were performed on MDCT system SOMATOM Definition AS+ (Siemens Healthcare, Forchheim, Germany). Calculation of the effective dose was done by ImPACT software (Impact, London) using CT dose index (CTDIvol) and dose length product (DLP) values. Organ dose to the eye lens was calculated from mAs value applied to the slices containing the lens. Diagnostic image quality of reconstructed data was evaluated by two experienced radiologists in a blinded fashion. Results. For IRIS, the average effective dose to the eye lens was 1.04 ± 0.21 mSv and for FBP 1.53 ± 0.29 mSv, with a reduction of approximately of 32%. The average organ dose for IRIS was 26.9 ± 1.9 mGy and 40.2 ± 3.2 mGy for FBP, with a dose reduction of 33.1%. A comparison of image quality showed no statistically significant difference (p = 0.21). Quantitative analysis of image noise revealed slightly increased noise levels in the IRIS group, the difference was statistically significant (p < 0.01). Conclusion. IRIS reconstruction algorithm in cerebral MDCT examinations can reduce the effective and eye lens organ dose approximately by one third, without significant deterioration of image quality compared to FBP reconstruction algorithm FBP., and Jiří Jandura, Jan Žižka, Tomáš Kvasnička, Jan Grepl, Ludovít Klzo
David M. Hovsepian, Gary P. Siskin, Joseph Bonn, John F. Cardella, Timothy W. I. Clark, Leo E. Lampmann, Donald L. Miller, Reed A. Omary, jean-Pierre Pelage, Dheeraj Rajan, Marc S. Schwartzberg, Richard B. Towbin, Woodruff J. Walker, David Sacks and Literatura 37