In this note we give an answer to a problem of Gheorghiță Zbăganu that arose from the study of the properties of the moments of the iterates of the integrated tail operator.
We describe a class of bivariate copulas having a fixed diagonal section. The obtained class contains both the Fréchet upper and lower bounds and it allows to describe non-trivial tail dependence coefficients along both the diagonals of the unit square.
This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.
Let L be an MS-algebra with congruence permutable skeleton. We prove that solving a system of congruences (θ1, . . . , θn; x1, . . . , xn) in L can be reduced to solving the restriction of the system to the skeleton of L, plus solving the restrictions of the system to the intervals [x1, x¯¯1], . . . , [xn, x¯¯n].
The minimum orders of degree-continuous graphs with prescribed degree sets were investigated by Gimbel and Zhang, Czechoslovak Math. J. 51 (126) (2001), 163–171. The minimum orders were not completely determined in some cases. In this note, the exact values of the minimum orders for these cases are obtained by giving improved upper bounds.
We give a universal discrimination procedure for determining if a sample point drawn from an ergodic and stationary simple point process on the line with finite intensity comes from a homogeneous Poisson process with an unknown parameter. Presented with the sample on the interval [0,t] the discrimination procedure gt, which is a function of the finite subsets of [0,t], will almost surely eventually stabilize on either POISSON or NOTPOISSON with the first alternative occurring if and only if the process is indeed homogeneous Poisson. The procedure is based on a universal discrimination procedure for the independence of a discrete time series based on the observation of a sequence of outputs of this time series.
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.