Here we present the first evidence of female dimorphism in ectoparasitic quill mites of the family Syringophilidae (Actinotrichida: Prostigmata: Cheyletoidea). Stibarokris phoeniconaias Skoracki et OConnor, 2010 and Ciconichenophilus phoeniconaias Skoracki et OConnor, 2010 so far have been treated as two distinct species cohabiting inside the quills of feathers of the lesser flamingo Phoeniconaias minor (Geoffroy Saint-Hilaire) and the American flamingo Phoenicopterus ruber Linnaeus. Although females of these species differ morphologically by the extent of body sclerotisation, presence/absence of lateral hypostomal teeth, and shape of dorsal setae, their important common features are the lack of leg setae vs II, and both stylophore and peritremes shape. Here, we apply the DNA barcode markers to test whether the differences between S. phoeniconaias and C. phoeniconaias have a genetic basis, indicating that they really are distinct taxa, or whether they just represent two morphs of a single species. All analysed sequences (616 bp for COI and 1 159 bp for 28S rDNA) obtained for specimens representing females of both studied taxa as well as male, tritonymph, protonymph and larva of S. phoeniconaias were identical, which indicates that S. phoeniconaias and C. phoeniconaias are conspecific. The formal taxonomic consequence of our results is denial of the genus status of Ciconichenophilus Skoracki et OConnor, 2010 and species status of C. phoeniconaias, and recommendation that they should be treated as junior synonyms of Stibarokris Kethley, 1970 and S. phoeniconaias, respectively.
Torotrogla merulae Skoracki, Dabert et Ehrnsberger, 2000 and T. rubeculi Skoracki, 2004 have been considered as distinct steno- and monoxenous quill mite species (Acari: Prostigmata: Syringophilidae) parasitizing the thrushes of the genus Turdus Linnaeus and the European robin Erithacus rubecula (Linnaeus), respectively. Morphological and molecular studies on the taxonomical status of these two species provided contradictory results. Well defined differences in morphology were not supported by substantial genetic distance in nucleotide sequences of the DNA barcode (mitochondrial cytochrome c oxidase subunit I, COI, and D2 domain of the nuclear 28S rRNA gene), by the topology of the phylogenetic trees (neighbor-joining, maximum parsimony, maximum likelihood) and the network analyses of the COI haplotype genealogy (median-joining, statistical parsimony) that reveal rubeculi populations nested within merulae haplotypes. Since detected differences between T. merulae and T. rubeculi populations (1.6-2.4% for COI and 0.1% for D2) are comparable to the intraspecific level observed in majority of currently recognized European Torotrogla species and are much lower than the interspecific distances observed in the genus, we postulate their conspecificity. Because main morphological distinctions concern the structures used for feeding, we hypothesize that they are the result of phenotypic plasticity evoked by specific and different environmental conditions prevailing on the host bodies (thickness of the feather quill wall).
In order to support his revolutionary view on scientific change, Kuhn suggests that there exist two separate aspects of the theory-change from Newtonian to Einsteinian physics that support his incommensurability thesis. For the evidence of his thesis, Kuhn offers the conceptual change in the meaning of the notion of “mass” in the theory-change. And he claims the absence of any neutral observational basis to evaluate the strengths of the two theories. This essay argues that these two cases fail to support his incommensurability thesis.