The function of adult neurogenesis in the dentate gyrus is not yet completely understood, though many competing theories have attempted to explain the function of these newly -generated neurons. Most theories give adult neurogenesis a role in aiding known hippocampal/dentate gyrus functions. Other theories offer a novel role for these new cells based on their unique physiological qualities, such as their low excitability threshold. Many behavioral tests have been used to test these theories, but results have been inconsistent and often contradictory. Substantial variability in tests and protocols may be at least partially responsible for the mixed results. On the other hand, conflicting results arising from the same tests can serve as aids in elucidating the function of adult neurogenesis. Here, we offer a hypothesis that considers the cognitive nature of tasks commonly used to assess the function of adult neurogenesis, and introduce a dichotomy between tasks focused on discrimination vs. generalization. We view these two aspects as opposite ends of the continuous spectrum onto which traditional tests can be mapped. We propose that high neurogenesis favors behavioral discrimination while low adult neurogenesis favors behavioral generalization of a knowledge or rule. Since many tasks require both, the effects of neurogenesis could be cancelled out in many cases. Although speculative, we hope that our view presents an interesting and testable hypothesis of the effect of adult neurogenesis in traditional behavioral tasks. We conclude that new, carefully designed behavioral tests may be necessary to reach a final consensus on the role of adult neurogenesis in behavior., A. Pistikova, H. Brozka, A. Stuchlik., and Obsahuje bibliografii
Mechanisms underlying atrial fibrillation (AF), the most common cardiac arrhythmia, particularly in aged population, are not fully elucidated. We have previously shown an increased propensity of old guinea pigs (GPs) heart to inducible AF when comparing to young animals. This study aimed to verify our hypothesis that susceptibility of aged heart to AF may be attributed to abnormalities in myocardial connexin-43 (Cx43) and extracellular matrix that affect cardiac electrical properties. Experiments were conducted on male and female 4-week-old and 24-week-old GPs. Atrial tissue was processed for analysis of Cx43 topology using immunohistochemistry, expression of Cx43 protein using immunobloting, and expression of mRNA of Cx43 and extracellular matrix metalloproteinase-2 (MMP-2) using real time PCR. Immunohistochemistry revealed uniform Cx43 distribution predominantly on lateral sides of the cardiomyocytes of young male and female GP atria. In contrast, non-uniform distribution, mislocalization and reduced immunolabeling of Cx43 were detected in atria of old GPs. In parallel, the atrial tissue levels of Cx43 mRNA were significantly decreased, while mRNA expression of MMP-2 was significantly increased in old versus young GPs. The changes were more pronounced in old GPs males comparing to females. Findings indicate that age-related down-regulation of atrial Cx43 and up-regulation of MMP-2 as well as disordered Cx43 distribution can facilitate development of AF in old guinea pig hearts., V. Nagibin, T. Egan Benova, C. Viczenczova, B. Szeiffova Bacova, I. Dovinova, M. Barancik, N. Tribulova., and Obsahuje bibliografii
Each cell types or tissues contain certain “physiological” levels of R-2-hydroxyglutarate (2HG), as well as enzymes for its synthesis and degradation. 2HG accumulates in certain tumors, possessing heterozygous point mutations of isocitrate dehydrogenases IDH1 (cytosolic) or IDH2 (mitochondrial) and contributes to strengthening their malignancy by inhibiting 2-oxoglutaratedependent dioxygenases. By blocking histone de-methylation and 5-methyl-cytosine hydroxylation, 2HG maintains cancer cells de-differentiated and promotes their proliferation. However, physiological 2HG formation and formation by non-mutant IDH1/2 in cancer cells were neglected. Consequently, low levels of 2HG might play certain physiological roles. We aimed to elucidate this issue and found that compared to highest 2HG levels in hepatocellular carcinoma HepG2 cells and moderate levels in neuroblastoma SH-SY5Y cells, rat primary fibroblast contained low basal 2HG levels at early passages. These levels increased at late passage and likewise 2HG/2OG ratios dropped without growth factors and enormously increased at hypoxia, reaching levels compared to cancer HepG2 cells. Responses in SH-SY5Y cells were opposite. Moreover, external 2HG supplementation enhanced fibroblast growth. Hence, we conclude that low 2HG levels facilitate cell proliferation in primary fibroblasts, acting via hypoxia-induced factor regulations and epigenetic changes., A. Dvořák, J. Zelenka, K. Smolková, L. Vítek, P. Ježek., and Obsahuje bibliografii
The aim of the current study was to clarify the effect of high sucrose diet (HSD) on bile formation (BF) in rats with hereditary hypertriglyceridemia (HHTg). Potentially positive effects were studied for boldine, a natural choleretic agent. Administration of HSD to HHTg rats led to increased triglyceride deposition in the liver. HSD reduced BF as a consequence of decreased biliary secretion of bile acids (BA) and glutathione. Responsible mechanism was down-regulation of hepatic transporters for BA and glutathione, Bsep and Mrp2, respectively. Moreover, gene expressions of transporters for other constituents of bile, namely Abcg5/8 for cholesterol, Abcb4 for phospholipids, and Oatp1a4 for xenobiotics, were also reduced by HSD. Boldine partially attenuated cholestatic effect of HSD by promotion of biliary secretion of BA through up-regulation of Bsep and Ntcp, and by increase in biliary secretion of glutathione as a consequence of its increased hepatic disposition. This study demonstrates mechanisms of impaired BF during nonalcoholic fatty liver disease induced by HSD. Altered function of responsible transporters suggests also potential for changes in kinetics of drugs, which may complicate pharmacotherapy in subjects with high intake of sucrose, and with fatty liver disease. Sucrose induced alterations in BF may be alleviated by administration of boldine., M. Zagorova, A. Prasnicka, Z. Kadova, E. Dolezelova, L. Kazdova, J. Cermanova, L. Rozkydalova, M. Hroch, J. Mokry, S. Micuda., and Obsahuje bibliografii
Safranal and crocin are biologically active compounds isolated from Crocus sativus L., commonly known as saffron. Clinical trials confirm that saffron has antidepressant effect, thus being a potential valuable alternative in the treatment of depression. The aim of the present study was to determine, whether systemic administration of safranal and crocin can influence the metabolic activity of CYP3A, CYP2C11, CYP2B, and CYP2A in rat liver microsomes (RLM). The experiments were carried out on male Wistar albino rats intragastrically administered with safranal (4, 20, and 100 mg/kg/day) or with intraperitoneal injections of crocin (4, 20, and 100 mg/kg/day). Our results demonstrate the ability of safranal and crocin to increase the total protein content and to change the metabolic activity of several CYP enzymes assessed as CYP specific hydroxylations of testosterone in RLM. Crocin significantly decreased the metabolic activity of all selected CYP enzymes, while safranal significantly increased the metabolic activity of CYP2B, CYP2C11 and CYP3A enzymes. Therefore, both substances could increase the risk of interactions with co-administered substances metabolized by cytochrome P450 enzymes., G. Dovrtělová, K. Nosková, J. Juřica, M. Turjap, O. Zendulka., and Obsahuje bibliografii
The effect of β3-adrenoceptor (β3-AR) agonists on adipocytes treated or not tr eated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [ 32 P]orthophosphate, we found that treatment with the selective β3-AR agonist CL316243 (CL; 1 μ M) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P3) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine -degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 μ g/ml), or wortmannin (WT, a PI -kinase inhibitor; 3 μ M). The results showed that CL induced PI(3,4,5)P 3 production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P3 in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β3-AR agonists on adipocytes., Y. Ohsaka, Y. Nomura., and Obsahuje bibliografii
This study extends our previous work by examining the effects of alpha2 -adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variab ility. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and he art rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexame - thonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of p ower spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethi-dine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge., Y.-H. Lin, Y.-P. Liu, Y.-C. Lin, P.-L. Lee, C.-S. Tung., and Obsahuje bibliografii
We aimed to determine the impact of Ca2+-related disorders induced in intact animal hearts on ultrastructure of the cardiomyocytes prior to occurrence of severe arrhythmias. Three types of acute experiments were performed that are known to be accompanied by disturbances in Ca2+ handling. Langedorffperfused rat or guinea pig hearts subjected to K+-deficient perfusion to induce ventricular fibrillation (VF), burst atrial pacing to induce atrial fibrillation (AF) and open chest pig heart exposed to intramyocardial noradrenaline infusion to induce ventricular tachycardia (VT). Tissue samples for electron microscopic examination were taken during basal condition, prior and during occurrence of malignant arrhythmias. Cardiomyocyte alterations preceding occurrence of arrhythmias consisted of non-uniform sarcomere shortening, disruption of myofilaments and injury of mitochondria that most likely reflected cytosolic Ca2+ disturbances and Ca2+ overload. These disorders were linked with non-uniform pattern of neighboring cardiomyocytes and dissociation of adhesive junctions suggesting defects in cardiac cell-to-cell coupling. Our findings identified heterogeneously distributed high [Ca2+]i-induced subcellular injury of the cardiomyocytes and their junctions as a common feature prior occurrence of VT, VF or AF. In conclusion, there is a link between Ca2+-related disorders in contractility and coupling of the cardiomyocytes pointing out a novel paradigm implicated in development of severe arrhythmias., N. Tribulova, V. Knezl, B. Szeiffova Bacova, T. Egan Benova, C. Viczenczova, E. Gonçalvesova, J. Slezak., and Obsahuje bibliografii