Leaf gas-exchange responses to shadefleck-sunfleck and sun-cloud transitions were determined for in situ Cycas micronesica K.D. Hill plants on the island of Guam to add cycads to the published gymnosperm data. Sequential sunfleck-shadefleck transitions indicated understory leaves primed rapidly but open field leaves primed slowly. Time needed to reach 90% induction of net CO2 assimilation (PN) was 2.9 min for understory leaves and 13.9 min for open field leaves. Leaf responses to sun-cloud transitions exhibited minimal adjustment of stomatal conductance, so PN rapidly returned to precloud values following cloud-sun transitions. Results indicate bi-directional leaf acclimation behavior enables mature C. micronesica trees to thrive in deep understory conditions in some habitats and as emergent canopy trees in other habitats. These data are the first nonconifer gymnosperm data; the speed of gas-exchange responses to rapid light transitions was similar to some of the most rapid angiosperm species described in the literature., T. E. Marler., and Obsahuje bibliografii
A hydroponic experiment was conducted to investigate bioaccumulation and photosynthetic activity response to Cd in sweet sorghum seedlings. The seedlings were treated with 0, 50, and 100 μM Cd for 15 d. Our results showed that morphological characteristics of sweet sorghum were significantly affected by Cd treatments. The Cd concentrations in roots and shoots increased with increasing Cd concentrations in the nutrition solution; higher Cd accumulation was observed in the roots. Meanwhile, the photosynthetic activity decreased significantly and a shape of chlorophyll (Chl) a fluorescence transient in leaves was altered by Cd treatments. The Chl contents in the leaves decreased significantly, which was demonstrated by a change of spectral reflectance. Our data indicated that the higher Cd concentration reduced Chl contents and inhibited electron transport in the leaves, leading to the decrease of photosynthetic activity., Z. C. Xue, J. H. Li, D. S. Li, S. Z. Li, C. D. Jiang, L. A. Liu, S. Y. Wang, W. J. Kang., and Obsahuje bibliografii
Kudlanka nábožná (Mantis religiosa) je příklad teplomilného druhu, který v posledních letech začal expandovat i do severnějších oblastí Evropy. Na základě studia mitochondriálních markerů se ukázalo, že v rámci Evropy kudlanky náleží do tří odlišných genetických linií. Tyto linie (západoevropská, středoevropská a východoevropská) se postupně po poslední době ledové šířily na sever z různých glaciálních refugií. Tuto teorii také podporují paleoklimatická data a distribuční modely možného šíření kudlanek po poslední době ledové., The Praying Mantis (Mantis religiosa) is an example of a thermophilic species, which has recently been expanding northwards across Europe. Based on the study of mitochondrial genes, it has been shown, that the European M. religiosa belong to three different genetic lineages (West-, Central- and East-European). These lineages have been gradually spreading northwards from different glacial refugias after the last glacial period. This theory has also been supported using paleoclimatic data and distribution models of the potential spread of M. religiosa after the last glacial period., and Jakub Vitáček, Petr Janšta.
Bohuslav Lázňovský, Výkladový slovníček na stranách 190-203, Poznámky pod čarou, Obsahuje bibliografické odkazy, and Converted from MODS to DC version 1.8 (EE patch 2018/05/24)
Ačkoli bylo světélkování u hub doloženo již ve starověku, intenzivnějšího vědeckého studia se tomuto jevu dostává teprve v posledních letech. Článek shrnuje naše dosavadní poznání bioluminiscence u hub z hlediska evolučního, ekologického i fyziologického. Jeho součástí jsou i fotografie dvou tropických druhů se světélkujícími plodnicemi - Mycena chlorophos a Filoboletus manipularis., Bioluminescence in fungi was first observed in the Archaic period or earlier, but it has only recently been studied scientifically. This paper sums up our knowledge on this phenomenon from evolutionary, ecological, and physiological points of view. Included are photos of two tropical species with luminescent fruiting bodies - Mycena chlorophos and Filoboletus manipularis., and Michal Sochor, Zuzana Egertová.
Globally, water deficit is one of the major constraints in chickpea (Cicer arietinum L.) production due to substantial reduction in photosynthesis. Photorespiration often enhances under stress thereby protecting the photosynthetic apparatus from photoinhibition. Application of bioregulators is an alternative to counter adverse effects of water stress. Thus, in order to analyze the role of bioregulators in protecting the photosynthetic machinery under water stress, we performed an experiment with two contrasting chickpea varieties, i.e., Pusa 362 (Desi type) and Pusa 1108 (Kabuli type). Water deficit stress was imposed at the vegetative stage by withholding water. Just prior to exposure to water stress, plants were pretreated with thiourea (1,000 mg L-1), benzyladenine (40 mg L-1), and thidiazuron (10 mg L-1). Imposed water deficit decreased relative water content (RWC), photosynthetic rate (P N), quantum efficiency of PSII (Fv/Fm), and enhanced lipid peroxidation (LPO). However, bioregulator application maintained higher RWC, P N, Fv/Fm, and lowered LPO under water stress. Expression of Rubisco large subunit gene (RbcL) was low under water stress both in the Kabuli and Desi type. However, bioregulators strongly induced its expression. Although poor expression of two important photorespiratory genes, i.e., glycolate oxidase and glycine decarboxylase H subunit, was observed in Desi chickpea under imposed stress, bioregulators in general and cytokinins in particular strongly induced their expression. This depicts that the application of bioregulators protected the photosynthetic machinery by inducing the expression of RbcL and photorespiratory genes during water deficit stress., T. V. Vineeth, P. Kumar, G. K. Krishna., and Obsahuje seznam literatury
V tomto článku je nastíněn základní úvod do problematiky biotransformace a jejich možných negativních důsledků. V textu jsou popsány tři fáze biotransformace a u každé z nich případ, se kterým se čtenář ve svém životě může setkat. Dále je zde jednoduchým způsobem vysvětlena nomenklatura biotransformačních enzymů a transportérů a článek tak celkově poskytuje základní povědomí o komplexnosti biotransformace., This article outlines a basic introduction to the topic of biotransformation and its possible negative consequences. The text describes three phases of biotransformation and each is presented in an example which the reader may encounter in everyday life. Furthermore, in a simple way, the nomenclature of biotransformation enzymes and transporters is explained and thus the paper provides a basic understanding of the complexity of biotransformation., and Ondřej Ženata.
The use of black leaf-clips for dark adaptation under high solar radiation conditions is reported to underestimate the maximum quantum yield of PSII photochemistry (Fv/Fm) measured by the continuous-excitation fluorometer Pocket PEA. The decrease in Fv/Fm was due to a rise in minimum fluorescence emission (F0), probably resulting from increased leaf temperature (Tl). In
field-grown tomato and pepper, fluorescence parameters and Tl in the region covered by the black leaf clip were measured in clipped leaves exposed to solar radiation during dark adaptation (clipped-only leaves) and in clipped leaves protected from solar radiation by aluminium foil (shrouded clipped leaves). Results confirmed significant Fv/Fm underestimates in clipped-only leaves primarily due to increased F0. In one tomato experiment, Tl increased from 30 to 44.5°C in clipped-only leaves, with a negligible rise in shrouded clipped leaves. In two respective pepper experiments, Tl in clipped-only leaves increased from 27 to 36.2°C and 33 to 40.9°C. Based on the results of this study, a clip-effect parameter (PCE) on fluorescence emission is proposed as the difference for Fv/Fm (or -F0/Fm) between shrouded clipped leaves and clipped-only leaves, which resulted to be 0.706 for tomato, and 0.241 and 0.358 for the two pepper experiments., P. Giorio ... [et al.]., and Obsahuje bibliografii