We have developed a simple and an effective method for the isolation of photochemically active broken chloroplasts from conifer needles that can be applied for a wide variety of conifer species with needle-like leaves. The utilisation of this method in photosynthetic studies offers a possibility to examine the efficiency of almost any component of thylakoid electron-transport chain and to disclose information about individual parts of primary photosynthetic processes that would be otherwise difficult to obtain. Various aspects influencing the outcome of this procedure, including the amount of needles necessary for sufficient yields, the possible length and the conditions of their storage, the best method for their disruption, the composition and pH of isolation and storage buffers, the centrifugation sequence, etc., are discussed., D. Holá ... [et al.]., and Obsahuje bibliografii
A new chamber was developed for a simultaneous measurement of fluorescence kinetics and oxygen exchange in filamentous and thallous algae as well as in small leaves of water plants. Algal filaments or thalli are kept by a stainless grid close to the bottom window of the chamber in the sample compartment. The grid separates the object from the electrode compartment with the oxygen electrode at the top. This compartment accommodates, in addition, a magnetic stirrer that provides efficient circulation of the medium between the sample and the electrode. This magnetic bar spins on a fixed axis and is driven by an electronically commutated magnetic field produced by four coils which are arranged around the chamber. This design yields a very favourable signal to noise ratio in the oxygen electrode records. Consequently, measurements can be performed even of algae with very low photosynthetic rates such as marine low-light red algae or algae under severe stress. For irradiation of the samples and for fluorescence measurements a fibre optic light guide is used facing the window of the chamber. The four branches of a commercially available light guide serve the following purposes: collection of sample fluorescence and supply of measuring, actinic, and saturating light, respectively. and H. Küpper, I. Šetlík, M. Hlásek.
The effect of ultraviolet B radiation (UV-B) on cellular ultrastructure, chlorophyll (Chl), carotenoids, and total phenolics of Acrostichum danaeifolium gametophytes was analyzed. The control group of spores was germinated under standard conditions, while the test group of spores was germinated with additional UV-B for 30 min every day for 34 d. The cell characteristics were preserved in gametophytes irradiated with UV-B, but the number of starch grains increased in the chloroplasts and the more developed grana organization in contrast to the chloroplasts of the control group. Chl a content decreased, while Chl b content increased in the gametophytes cultivated with UV-B for 34 d. Contents of lutein and zeaxanthin decreased and trans-β-carotene concentration was enhanced in the gametophytes irradiated with UV-B. The content of total phenolic compounds increased in the gametophytes cultivated with UV-B. Therefore our data suggest that the gametophytes of A. danaeifolium, a fern endemic to the mangrove biome, were sensitive to enhancement of UV-B radiation at the beginning of their development and they exhibited alterations in their ultrastructure, pigment contents, and protective mechanisms of the photosynthetic apparatus, when exposed to this radiation., A. M. Randi, M. C. A. Freitas, A. C. Rodrigues, M. Maraschin, M. A. Torres., and Obsahuje bibliografii
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 μmol m-2 s-1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 μmol m-2 s-1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness. and I. Kurasová ... [et al.].
We investigated the acclimation of seedlings of three tropical rain forest sub-canopy Garcinia species (G. xanthochymus, G. cowa, and G. bracteata) after transfer from 4.5 (LI) to 40 % (HI) sunlight and 12.5 (MI) sunlight to HI (LH1 and LH2 denoting transfer from LI to HI and MI to HI transfer, respectively). The changes of chlorophyll (Chl) fluorescence, net photosynthetic rate (PN), dark respiration rate (RD), Chl content per unit area (Chlarea), leaf mass per unit area (LMA), and seedling mortality were monitored over two months after transfer. These parameters together with leaf anatomy of transferred and control seedlings (kept in LI, MI, and HI) were also examined after two months. No seedlings died during the two months. Fv/Fm, PN, and Chlarea of the transferred seedlings decreased in the first 3 to 12 d. LH1 leaves showed larger reduction in Fv/Fm (>23 % vs. <16 %) and slower recovery of Fv/Fm than LH2 leaves. PN started to recover after about one week of I transfer and approached higher values in all G. cowa seedlings and G. xanthochymus LH1 seedlings than those before the transfer. However, PN of G. bracteata seedlings approached the values before transfer. The final PN values in leaves of transferred G. xanthochymus and G. cowa seedlings approached that of leaves kept in HI, while the final PN values of transferred leaves of G. bracteata were significantly lower than that of leaves grown under HI (p<0.05). RD of G. xanthochymus LH1 seedlings and all G. cowa seedlings increased and approached the value of the seedlings in HI. The final Chlarea of both G. xanthochymus and G. cowa approached the values before transfer, but that of G. bracteata did not recover to the level before transfer. The final Chlarea of all transferred seedlings was not significantly different from that of seedlings in HI except that G. cowa LH1 seedlings had higher Chlarea than that in HI. LMA decreased within 2 d and then increased continuously until about 30 d and approached the value under HI. Spongy/palisade mesophyll ratio decreased after transfer because of the increase in palisade thickness. Leaf thickness did not change, so LMA increase of transferred seedlings was mainly due to the increase of leaf density. Thus the mature leaves under LI and MI of G. xanthochymus and G. cowa are able to acclimate to HI by leaf physiological and anatomical adjustment, while G. bracteata had limited ability to acclimate to HI. and X. R. Guo, K. F. Cao, Z. F. Xu.
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark., N. Maximová, Ľ. Slováková., and Obsahuje bibliografii
In chloroplasts of Spinacea oleracea L., Hg2+ ions interact with some sites in the photosynthetic electron transport chain: (l) with the intermediates Z+/D+ situated in the D1 and D2 proteins and with the manganese cluster in the oxygen evolving complex which are located on the donor side of photosystem (PS) 2, (2) with the chlorophyll a dimer in the core of PS1 (P700). P700 is oxidized in the dark by HgCl2. The Hg2+ ions form organometallic complexes with amino acids contained in chloroplast proteins. and F. Šeršeň, K. Král'ová, A. Bumbálová.
Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3-, and H2PO4-) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4+ production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress., H. Wang, X. Lin, S. Cao, Z. Wu., and Obsahuje bibliografii