Only three tree species, i.e. Ulmus pumila, Malus baccata, and Prunus padus, are distributed in Hunshandak Sandland (HS) in Inner Mongolia, China. Field studies of gas exchange and chlorophyll (Chl) fluorescence of these three tree species were conducted in three arid periods of growth season 2002. Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and Fv/Fm of U. pumila were higher than in M. baccata and P. padus, especially in the midday. Hence M. baccata and P. padus were more sensitive to high temperature and irradiance than U. pumila in HS. This may be a reason for wide distribution of U. pumila in HS. M. baccata and P. padus are adapted to the back slope of fixed dune, because the micro-habitat is relatively cool and less irradiated than the slope facing sun. Water use efficiency (WUE) of U. pumila was lower than that of M. baccata and P. padus, and thus U. pumila does not form forests in this region, because the soil is dry. and Y. G. Li ... [et al.].
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m-3 noted as N50, N100, N150, N200, N250, and N300, respectively), applied through the fertirrigation technique. N250 and N300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus. and J. A. Marchese ... [et al.].
During mild water stress (decrease of full water capacity from 60 to 35 %) net photosynthetic rate (PN) of four spring barley and wheat genotypes was about twice lower than that for unstressed plants and was mainly limited by non-stomatal factors. Availability of CO2 from intercellular spaces did not change significantly when stomatal conductance (gs) decreased from 0.25-0.35 to 0.15-0.20 mol(H2O) m-2 s-1. There may be two main processes leading to similar intercellular CO2 concentration (ci) in stressed and unstressed seedlings despite of twice lower PN under mild water stress: (a) lower diffusion of CO2 through stomata represented by lower gs, (b) lower consumption of CO2 by photosynthetic apparatus of stressed plants. Last factor is partially pronounced by lower response of PN to ci observed for stressed than for control plants.
Leaf gas exchange of terrestrial and epiphytic orchids from the Atlantic Rainforest in northeast Brazil was investigated under artificial growth conditions. The terrestrial orchids showed higher values of all photosynthetic parameters in comparison to epiphytic ones. There was a close relationship between PN and gs for both terrestrial and epiphytic orchids. Taken together, our results demonstrated that the photosynthetic parameters were related to the specific growth habits of the orchids under study., M. V. Pires ... [et al.]., and Obsahuje bibliografii
Leaf stomatal density (SD), net photosynthetic rates (PN), and stomatal conductance (gs) of Hordeum vulgare and Pisum sativum cultivars in Himalaya increased with altitude. Higher PN and leaf temperature under low CO2 partial pressure at high altitudes could evoke a higher gs and SD to allow sufficient influx of CO2 as well as more efficient leaf cooling through transpiration. and S. K. Vats, N. Kumar, S. Kumar.
The aim of this study was to characterize the key physiological aspects of three sugarcane cultivars (RB92579, RB867515 and RB872552) under biological nitrogen fixation (BNF). Plants were generated in tubes containing aseptic substrates and these plants were transferred to pots containing washed sand, but watered with a mineral fertilizer, and inoculated with a mixture of five diazotrophic bacteria three times at seven-day intervals. Under BNF, all of the cultivars contained half of their total leaf nitrogen content and 50% less shoot dry mass. The leaves of plants under BNF showed approximately 65% less of the total protein content (TP). The
gas-exchange control plants had twice the CO2 assimilation rates than the BNF plants. The activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) was increased in all cultivars under BNF when compared with the control; thus, the content of hydrogen peroxide (H2O2) was also increased in these plants. The results of this study indicate that after acclimatization, the inoculation of young plants from tissue culture with diazotrophic bacteria could supply approximately 50% of their nitrogen requirement., C. D. Medeiros ... [et al.]., and Obsahuje bibliografii
We examined differences in net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), ratio of substomatal to atmospheric CO2 concentration (Ci/Ca), cuticle thickness (CT), epidermis cell size (ECS), mesophyll cell size (MCS), vascular bundle size (VBS), tissue density (TD), and coefficient of water loss (k) in Sabina vulgaris as related to sex, shoot form, and leaf form. PN, E, WUE, Ci/Ca, MCS, VBS, and k varied with sex, whereas CT, ECS, and TD did not. These differences in physiology and anatomy between the female and male plants may be closely related with their reproduction behaviour. PN, E, Ci/Ca, CT, ECS, MCS, and VBS were significantly smaller in the erect shoots than in the prostrate shoots, WUE was just opposite; TD and k did not vary with shoot form. These changes in physiology with shoot form indicate that erect shoots may be more tolerant of water stress than prostrate shoots. PN, E, Ci/Ca, TD, and k were significantly greater in the spine leaves than in the scale leaves, whereas WUE, CT, ECS, MCS, and VBS followed the opposite trends. The changes in physiology and anatomy with leaf form suggest that scale leaves have higher drought-resistant and water-holding capacities than spine leaves. Measurements of field gas exchange showed that three-year-old seedlings had lower drought-resistance and higher water loss than five-year-old seedlings, which provides some evidence that seedling survival decreases with decreasing plant age. and W. M. He, X. S. Zhang, M. Dong.
Net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), stomatal conductance (gs), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low gs. Unlike S. oblata, the maximal photosynthetic rate (Pmax) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower PN together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia. and H. X. Cui ... [et al.].
The gas-exchange characteristics, leaf water potential and chlorophyll (Chl) a fluorescence of oil palm (Elaeis guineensis Jacq.) seedlings subjected to water stress and recovery were investigated in a greenhouse experiment. At 24 days after imposition of stress, leaf water potential in water-stressed seedlings was doubled compared to that of control and there was a drastic decline in gas-exchange parameters viz. photosynthesis, transpiration, and stomatal conductance. Water stress did not irreversibly affect gas-exchange parameters and quantum efficiency of photosystem II, as seedlings exhibited total recovery of photosynthetic apparatus by 12th day of rehydration. These findings indicate that oil palm exhibits physiological plasticity to water stress during the seedling stage. and K. Suresh ... [et al.].
We studied water relations and gas exchange in six almond genotypes grafted on GF677 in response to withholding irrigation for 14 days and a subsequent 10-day rehydration period. The responses to drought stress significantly differed in the almond genotypes; the tolerant plants were distinguished and monitored. Leaf relative water content (RWC) decreased by more than 23%, leaf water potential dropped to less than -4.3 MPa, and electrolyte leakage increased to 43% in dehydration-sensitive genotypes. Photosynthesis (PN) and stomatal conductance (gs) of drought-sensitive genotypes were significantly reduced by 70% and 97% in response to water deficiency. Water stress significantly enhanced wateruse efficiency up to 10 folds in drought-tolerant almonds. The difference between leaf temperature and its surrounding air temperature (ΔT) increased significantly to more than 187% under water stress in drought-tolerant genotypes. In addition, the reduction in the g s and further ability to preserve RWC were involved probably in drought-tolerance mechanism in almond. Negative significant correlations were found between ΔT, PN, and gs. Based on the correlations, we suggested that ΔT could be used as a simple measurement for monitoring water stress development in the irrigation management of almond orchards. In conclusion, ‘Supernova’ and the Iranian genotypes ‘6-8’ and ‘B-124’, were found to be more droughttolerant compared with other genotypes in this experiment., S. Karimi, A. Yadollahi, K. Arzani, A. Imani, M. Aghaalikhani., and Obsahuje bibliografii