Measurement of leaf area is commonly used in many horticultural research experiments, but it is generally destructive, requiring leaves to be removed for measurement. Determining the individual leaf area (LA) of bedding plants like pot marigold (Calendula officinalis L.), dahlia (Dahlia pinnata), sweet William (Dianthus barbatus L.), geranium (Pelargonium × hortorum), petunia (Petunia × hybrida), and pansy (Viola wittrockiana) involves measurements of leaf parameters such as length (L) and width (W) or some combinations of these parameters. Two experiments were carried out during spring 2010 (on two pot marigold, four dahlia, three sweet William, four geranium, three petunia, and three pansy cultivars) and summer 2010 (on one cultivar per species) under greenhouse conditions to test whether a model could be developed to estimate LA of bedding plants across cultivars. Regression analysis of LA versus L and W revealed several models that could be used for estimating the area of individual bedding plants leaves. A linear model having LW as the independent variable provided the most accurate estimate (highest R2, smallest mean square error, and the smallest predicted residual error sum of squares) of LA in all bedding plants. Validation of the model having LW of leaves measured in the summer 2010 experiment coming from other cultivars of bedding plants showed that the correlation between calculated and measured bedding plants leaf areas was very high. Therefore, these allometric models could be considered simple and useful tools in many experimental comparisons without the use of any expensive instruments. and F. Giuffrida ... [et al.].
Let $T$ be a locally compact Hausdorff space and let $C_0(T)$ be the Banach space of all complex valued continuous functions vanishing at infinity in $T$, provided with the supremum norm. Let $X$ be a quasicomplete locally convex Hausdorff space. A simple proof of the theorem on regular Borel extension of $X$-valued $\sigma $-additive Baire measures on $T$ is given, which is more natural and direct than the existing ones. Using this result the integral representation and weak compactness of a continuous linear map $u\: C_0(T) \rightarrow X$ when $c_0 \lnot \subset X$ are obtained. The proof of the latter result is independent of the use of powerful results such as Theorem 6 of [6] or Theorem 3 (vii) of [13].
In 1932 Whitney showed that a graph G with order n ≥ 3 is 2-connected if and only if any two vertices of G are connected by at least two internally-disjoint paths. The above result and its proof have been used in some Graph Theory books, such as in Bondy and Murty’s well-known Graph Theory with Applications. In this note we give a much simple proof of Whitney’s Theorem.
The nonhomogeneous backward Cauchy problem $$u_t +Au(t) = f(t),\quad u(T) = \varphi$$, where $A$ is a positive self-adjoint unbounded operator which has continuous spectrum and $f$ is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.
We present a simplified integral of functions of several variables. Although less general than the Riemann integral, most functions of practical interest are still integrable. On the other hand, the basic integral theorems can be obtained more quickly. We also give a characterization of the integrable functions and their primitives.
The paper deals with the rotor vibration in journal bearings to prepare a model for verifying the rotor vibration active control. The rotor is maintained in equilibrium position by forces generated in oil film. Bearing forces can be modelled as a spring and damper system. The main goal of the simulation study is to verify the model principle and to estimate parameters by comparing simulation results with experimental data, namely the instability of motion. Test stand with rotor supported in two journal bearings was designed for these purposes. The stand will be equipped with four piezoactuators enabling excitation of bearings by practically arbitrary dynamic force. Theoretical analysis of the influence of external excitation on rotor behaviour was carried out. Up to now the study shows that simple kinematic excitation is effective for reducing rotor excursion while passing critical speeds. To suppress self-exciting vibration of the rotor it is necessary to look for more sophisticated solution. and Obsahuje seznam literatury
A single-step information-theoretic algorithm that is able to identify possible clusters in dataset is presented. The proposed algorithm consists in representation of data scatter in terms of similarity-based data point entropy and probability descriptions. By using these quantities, an information-theoretic association metric called mutual ambiguity between data points is defined, which then is to be employed in determining particular data points called cluster identifiers. For forming individual clusters corresponding to cluster identifiers determined as such, a cluster relevance rule is defined. Since cluster identifiers and associative cluster member data points can be identified without recursive or iterative search, the algorithm is single-step. The algorithm is tested and justified with experiments by using synthetic and anonymous real datasets. Simulation results demonstrate that the proposed algorithm also exhibits more reliable performance in statistical sense compared to major algorithms.
In the paper is described the construction of the radio telescope for the wavelengths of 56 and 130 cm which has been used on the observatory of the Astronomical Institute of the ČSAV at Ondřejov for radio observations of the sun. Prevailing part of the work is devoted to the receiving equipment for the wavelength of 56 crn, which whole was built in own laboratories and which has been for 3 years in everyday operation. The author explains the determination of the fundamental parameters of the equipment and describes the means necessary to reach them. The design proposal and the realization of the receiver for the wavelength of 56 cm together with a high-stability d. c. amplifier and the design and realization of the calibrating arrangements including diode noisegenerator are described. Further the author considers to the details the influence of different quantities on the measurement accuracy and on the estimation of the resulting power flux density in the antenna apertuře with this instrument. Finally, a servomechanism performing automatic transformation of equatorial to azimuthal coordinates is described. In the next part the 130 cm - equipment is briefly mentioned. This equipment was of substantial part built outside the Institute. The both receiving apparatus use a common mirror of 7‘5m diameter having in its focus two primary feeds with
polarizations perpendicular to each other.