In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in a Euclidean space, may lead to slow convergence of the constructed sequence when that sequence enters some narrow “corridor” between two or more convex sets. A way to leave such corridor consists in taking a big step at different moments during the iteration, because in that way the monotoneous behaviour that is responsible for the slow convergence may be interrupted. In this paper we present a technique that may introduce interruption of the monotony for a sequential algorithm, but that at the same time guarantees convergence of the constructed sequence to a point in the intersection of the sets. We compare experimentally the behaviour concerning the speed of convergence of the new algorithm with that of an existing monotoneous algorithm.
Let $\Omega $ be a bounded open set in $\mathbb R^n$, $n \geq 2$. In a well-known paper {\it Indiana Univ. Math. J.}, 20, 1077--1092 (1971) Moser found the smallest value of $K$ such that $$ \sup \bigg \{\int _{\Omega } \exp \Big (\Big (\frac {\left |f(x)\right |}K\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\|\nabla f\|_{L^n}\leq 1\bigg \}<\infty . $$ We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$ $(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.
Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.
We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results., Lihua You, Yujie Shu, Xiao-Dong Zhang., and Obsahuje seznam literatury
The theorem about the characterization of a GS-quasigroup by means of a commutative group in which there is an automorphism which satisfies certain conditions, is proved directly.
We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u, namely, it is represented by a stress tensor T (Du, p):= v(p, |D|2)D which satisfies r-growth condition with r \in (1, 2]. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998)., Václav Mácha., and Obsahuje seznam literatury
As said by Mareš and Mesiar, necessity of aggregation of complex real inputs appears almost in any field dealing with observed (measured) real quantities (see the citation below). For aggregation of probability distributions Sklar designed his copulas as early as in 1959. But surprisingly, since that time only a very few literature have appeared dealing with possibility to aggregate several different pairwise dependencies into one multivariate copula. In the present paper this problem is tackled using the well known Iterative Proportional Fitting Procedure. The proposed solution is not an exact mathematical solution of a marginal problem but just its approximation applicable in many practical situations like Monte Carlo sampling. This is why the authors deal not only with the consistent case, when the iterative procedure converges, but also with the inconsistent non-converging case. In the latter situation, the IPF procedure tends to cycle (when combining three pairwise dependencies the procedure creates three convergent subsequences), and thus the authors propose some heuristics yielding a "solution'' of the problem even for inconsistent pairwise dependence relations.
Perez's approximations of probability distributions by dependence structure simplification were introduced in 1970s, much earlier than graphical Markov models. In this paper we will recall these Perez's models, formalize the notion of a compatible system of elementary simplifications and show the necessary and sufficient conditions a system must fulfill to be compatible. For this we will utilize the apparatus of compositional models.
Most satellite laser stations have used extermal terrestrial targets at distances from several hundred metres to kilometres for the determination of the calibration constant. The disadvantage of this method is the incomplete overlap of the transmitter and receiver angular fields and the necessity to monitor accurately the optical distance of the remote target. At Potsdam station, one year ago we introduced a very simple calibration link based on dual diffuse scattering, which can be easily attached in front of any laser radar. No optical components other than diffuse reflectors are used. The inherent attenuation is about 10^13, so that a 1000 : 1 additional filter is sufficient to reach the single photoelectron level. The method has been used for routing operations during the MERIT campaign and for investigating some error sources as well.