Various types of mechanosensitive ion channels, including cationic stretch-activated channels (SAC NS ) and stretch-activated BKca (SAKca) channels, modulate heart rhythm. Bepridil has been used as an antiarrhythmic drug with multiple pharmacological effects; however, whether it is effective for mechanically induced arrhythmia has not been well investigated. To test the effects of Bepridil on SAKca channels activity, cultured chick embryo nic ventricular myocytes were used for single - channel recordings. Bepridil significantly reduced the open probability of the SAKca channel (PO). Next, to test the effects of bepridil on stretch-induced extrasystoles (SIE), we used an isolated 2-week-old Langendorff-perfused chick heart. The left ventricle (LV) volume was rapidly changed, and the probability of SIE was calculated in the presence and absence of bepridil, and the effect of the drug was compared with that of Gadolinium (Gd3+). Bepridil decreased the probability of SIE despite its suppressive effects on SAKca channel activity. The effects of Gd3+, which blocks both SAKca and SACNS , on the probability of SIE were the same as those of bepridil. Our results suggest that bepridil blocks not only SAKc a channels but possibly also blocks SACNS , and thus decreases the stretch -induced cation influx (stabilizing membrane potential) to compensate and override the effects of the decrease in outward SAKca current (destabilizing membrane potential)., H. Jin, G. Iribe, K. Naruse., and Obsahuje bibliografii
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. Since HMB is synthesized in the liver, unique effects of exogenous HMB intake may be hypothesized in subjects with liver disease, in which muscle wasting is frequently found. We studied effects of HMB on the liver and soleus (SOL) and extensor digitorum longus (EDL) muscles in partially-hepatectomized (PH) rats. HMB or saline was infused using osmotic pumps to PH or sham-operated rats for 7 days. We found lower body weight and protein content in EDL of PH rats treated with saline than in sham-operated animals. These effects were insignificant in HMB treated animals. In blood plasma of PH rats treated with HMB we found lower concentrations of creatinine and higher concentrations of urea and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) than in PH animals treated with saline. HMB increased BCAA concentrations in SOL and EDL of PH animals and decreased proteolysis in EDL of both sham-operated and PH animals. In the livers of PH rats treated with HMB we found higher DNA content, DNA fragmentation, and BCAA concentrations than in saline-treated animals. The results indicate that HMB affects metabolism of BCAA and has positive influence on protein balance in muscles. Further studies are needed to clarify the effect of HMB on liver regeneration., M. Holeček, M. Vodeničarovová., and Obsahuje bibliografii
The aim of this study was to explore the changes in the adipokines leptin and adiponectin in obese patients with type 1 diabetes mellitus (T1DM) who underwent seven days of fasting and 21 days of low-calorie diet (LCD). The plasma leptin and adiponectin concentrations were measured in 14 obese patients with T1DM at baseline, immediately after 7 days of fasting, and after 21 days of LCD. 13 non-obese patients with T1DM were studied only after an overnight fasting. Bioimpedance technique was used for determination of body composition. Obese T1DM patients lost 6.0 kg (6.0; 6.8) (median, 25 %; 75 %) and decreased their fat tissue after fasting and LCD. Plasma leptin in obese T1DM was significantly higher than in non-obese T1DM patients: 9.10 (5.06; 25.89) vs. 1.71 (1.12; 7.08) μg ∙ l-1 and transiently decreased immediately after fasting: 3.45 μg ∙ l-1 (1.47; 7.00), (P<0.05). Adiponectin/leptin ratio in obese T1DM was significantly lower than in non-obese T1DM patients: 0.67 (0.57; 1.49) vs. 3.50 (2.46; 6.30) ∙ 103 and transiently increased immediately after fasting: 2.22 (1.26; 3.24) ∙ 103, (P<0.05). We conclude that obese patients with T1DM are characterized by hyperleptinemia that is reduced by prolonged fasting, but only slightly affected by low calorie diet., F. Musil, V. Blaha, A. Ticha, R. Hyspler, M. Haluzik, J. Lesna, A. Smahelova, L. Sobotka., and Obsahuje bibliografii
Brassinosteroids (BRs) have been reported to counteract various stresses. We investigated effects of exogenously applied brassinosteroid, 24-epibrassinolide (EBR), and brassinosteroid-mimic compound, 7,8-dihydro-8α-20-hydroxyecdysone (DHECD), on the photosynthetic efficiency and yield of rice (Oryza sativa L. cv. Pathum Thani 1) under heat stress. Solutions (1 nM) of EBR and DHECD were separately sprayed onto foliage of individual rice plants during their reproductive stage. Five days after the application, the plants were transferred to the day/night temperature regime of 40/30°C for 7 days and then allowed to recover at normal temperature for 7 days. We demonstrated that both DHECD and EBR helped maintain the net photosynthetic rate. The DHECD and EBR application enhanced stomatal conductance, stomatal limitation, and water-use efficiency under the high-temperature regime. DHECD- and EBR-treated plants showed an increase in the nonphotochemical quenching that was lower than that in the control plants. Moreover, DHECD and EBR treatments maintained the maximal quantum efficiency of PSII photochemistry and the efficiency of excitation capture of the open PSII center. Furthermore, the treatments with DHECD or EBR resulted in higher chlorophyll content during the heat treatment compared with the control plants. The paddy field application of 1 nM EBR and/or 1 nM DHECD at the reproductive stage during the hot season could increase the rice yield, especially, the number of filled seeds. DHECD and EBR enhanced total soluble sugar and reducing sugar in straw and more starch was accumulated in rice seeds. Consequently, our results confirmed that DHECD showed biological activities mimicking EBR in the improvement of photosynthetic efficiency and in rising the rice yield under heat stress., J. Thussagunpanit, K. Jutamanee, W. Sonjaroon, L. Kaveeta,
W. Chai-Arree, P. Pankean, A. Suksamrarn., and Obsahuje bibliografii
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil. and C.-W. Yang ... [et al.].
Ca2+ is an important factor mediating many biotic and abiotic stress responses in plants. In this study, we measured the chlorophyll (Chl) fluorescence of transgenic rice with increased or decreased expression of a calcium-sensing receptor (OsCaS) gene during water deficit caused by polyethylene glycol to prove our hypothesis that increased Ca2+ in combination with increased OsCaS could enhance the drought resistance of transgenic rice. Transcript abundance (evaluated by RT-PCR) was significantly lower in OsCaS antisense line 766 (AS766) than that in the wild type, while the overexpression line 777 (O777) showed four times higher amount than that in the wild type. Chl fluorescence showed that the photochemical quantum yield of PSII in the light increased due to addition of Ca2+ in the O777, but dropped in the AS766. Nonphotochemical quenching increased under stress in both transgenic lines and in the wild type, but less in the O777. Nonregulatory quantum yield of energy dissipation showed no significant change under drought stress. Photochemical quenching was significantly higher in the O777 than those in the AS766 and in the wild type after the Ca2+ treatment. In the absence of stress, the electron transport rate (ETR) was significantly higher in the O777 than in both the AS766 and the wild type. In contrast, the ETR of the wild type and both transgenic lines decreased under drought stress, while the effect of polyethylene glycol was partially alleviated by Ca2+ addition in the O777. In summary, excitation energy conversion and dissipation by PSII were regulated by Ca2+ in the O777. It might partially alleviate the effect of drought stress, whereas addition of Ca2+ had no effect in the wild type and the AS766., R. Wei, Y. Liu, Y. Sui, M. Xu, S. Liu, X. Zhao., and Obsahuje seznam literatury
The effects of 0, 2.5, 5.0, and 10.0 mg(Cd2+) m-3 [Cd(NO3)2×4 H2O] and 0 and 10.0 mg m-3 gibberellin on certain parameters of photosynthesis and growth in soybean (Glycine max L. cv. Pershing) plants were studied. With increasing Cd2+ concentration in the Hoagland nutrient solution, the contents of chlorophyll and CO2 compensation concentration decreased. The addition of 10 mg m-3 gibberellin reduced the negative effects of Cd2+ in shoot and root growth. With increasing of Cd2+ concentration in the culture medium, the dry matter production in both the roots and shoots decreased as shown by the decline in growth rate (PGR), net assimilation rate (NAR), and leaf area ratio. The addition of gibberellin caused a partial elimination of the Cd effects on the roots and shoots and the PGR and NAR and it increased leaf area and length of stem. and M. Ghorbanli, S. Hadad Kaveh, M. Farzami Sepehr.
We tested the mode of action of Cd on photosynthesis and activities of ATP-sulfurylase (ATP-S), catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and on contents of phytochelatins (PCs) and glutathione (GSH) in two cultivars of wheat (Triticum aestivum L.) PBW-343 and WH-542 differing in yield potential. Cd treatment increased Cd content and photosynthetic activity in PBW-343 more than in WH-542. The activities of APX, GR, ATP-S, and synthesis of PCs and GSH were also increased by Cd, but the CAT and SOD activities were inhibited in both the cultivars. The efficient functioning of antioxidative enzymes, production of PCs and GSH, helped in counteracting the effects of Cd namely in PBW-343, protected photosynthetic ability, and increased the tolerance to Cd. and I. Ahmad ... [et al.].
Since fiber reinforced composites are often used in an aggressive environment (bridge decks, drainage pipes etc.), it is necessary to estimate their durability and ability to maintain superior mechanical properties in such conditions. One of microscale mechanisms that has a dominant influence on achieving desirable mesomechanical behavior, such as multiple cracking, is fiber-matrix interfacial bond. In the present study, the effect of calcium leaching on the bond properties and fiber-matrix interfacial one are experimentally investigated. To this end, a series of tests is performed, in which a single fiber is pulled out from cementitious matrix under displacement control. Both chemical and frictional bonds are calculated from the measured load-displacement curves, and the effect of environmental exposure on these parameters is clarified. In order to gain a deeper insight into the microscale mechanical phenomena associated with calcium leaching, the fiber-matrix interfaces of both control and chemically attacked specimens are examined by nanoindentation and ESEM. These experiments show that leaching severely degrades the stiffness of the farther transitional zone. and Obsahuje seznam literatury
Heavy metals such as cadmium (Cd) may affect different physiological functions in plants. We carried out a hydroponic experiment under greenhouse conditions in order to evaluate the effect of Cd on photosynthetic and physiological parameters of safflower. The responses of six safflower genotypes (Nebraska-10, 2811, Kouseh, S149, C111, and K12) to four concentrations of CdCl2 (0, 1.5, 3, and 4.5 mg L-1) were examined. Mean shoot and root dry masses of safflower plants were reduced by nearly 57% after the treatment by 4.5 mg(CdCl2) L-1. Contrary to the mean proline content, which increased by 121%, the mean total leaf area per plant, net photosynthetic rate, stomatal conductance to the CO2, leaf chlorophyll a, b, and (a+b), carotenoid content, and quantum efficiency of PSII decreased by 84.4, 50.5, 50.0, 31.6, 32.2, 31.8, 32.9, and 11.2%, respectively, at the presence of 4.5 mg(CdCl2) L-1. The mean Cd concentration in shoots and roots of safflower genotypes exhibited 52- and 157-fold increase, respectively, due to the addition of 4.5 mg(CdCl2) L-1 to the growing media. The mean malondialdehyde content was enhanced by 110% with the increasing CdCl2 concentration, indicating the occurrence of a considerable lipid peroxidation in the plant tissues. Even though the membrane stability index was adversely affected by the application of 1.5 mg(CdCl2) L-1, the decrease ranged from 45 to 62% when plants were treated with 4.5 mg(CdCl2) L-1. Genotype Nebraska-10 seemed to be different from the remaining genotypes in response to the 4.5 mg(CdCl2) L-1; its net photosynthetic rate tended to be the greatest and the Cd concentration in shoots and roots was the lowest among genotypes studied. This study proved Cd-induced decline in growth, photosynthesis, and physiological functions of safflower., L. Moradi, P. Ehsanzadeh., and Obsahuje seznam literatury