Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete It\^o formula, which is developed by Fujita, we establish the discrete Hamilton-Jacobi-Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation are also discussed.
We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number.
A condition for solvability of an integral equation which is connected with the first boundary value problem for the heat equation is investigated. It is shown that if this condition is fulfilled then the boundary considered is 1⁄2-Hölder. Further, some simple concrete examples are examined.
In this note we give a negative answer to Zem�nek's question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \|T^{n+1} - T^n\| = 0.$.
In this paper, we deal with strong stationarity conditions for mathematical programs with equilibrium constraints (MPEC). The main task in deriving these conditions consists in calculating the Fréchet normal cone to the graph of the solution mapping associated with the underlying generalized equation of the MPEC. We derive an inner approximation to this cone, which is exact under an additional assumption. Even if the latter fails to hold, the inner approximation can be used to check strong stationarity via the weaker (but easier to calculate) concept of M-stationarity.
We improve a theorem of C. L. Belna (1972) which concerns boundary behaviour of complex-valued functions in the open upper half-plane and gives a partial answer to the (still open) three-segment problem.
The paper deals with several criteria for the transcendence of infinite products of the form $\prod _{n=1}^\infty {[b_n\alpha ^{a_n}]}/{b_n\alpha ^{a_n}}$ where $\alpha >1$ is a positive algebraic number having a conjugate $\alpha ^*$ such that $\alpha \not =|\alpha ^*|>1$, $\{a_n\}_{n=1}^\infty $ and $\{b_n\}_{n=1}^\infty $ are two sequences of positive integers with some specific conditions. \endgraf The proofs are based on the recent theorem of Corvaja and Zannier which relies on the Subspace Theorem ({P. Corvaja, U. Zannier}: On the rational approximation to the powers of an algebraic number: solution of two problems of Mahler and Mendès France, Acta Math. 193, (2004), 175–191).
In this note we first give a summary that on property of a remainder of a non-locally compact topological group $G$ in a compactification $bG$ makes the remainder and the topological group $G$ all separable and metrizable. If a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ of $G$ belongs to $\mathcal {P}$, then $G$ and $bG\setminus G$ are separable and metrizable, where $\mathcal {P}$ is a class of spaces which satisfies the following conditions: (1) if $X\in \mathcal {P}$, then every compact subset of the space $X$ is a $G_\delta $-set of $X$; (2) if $X\in \mathcal {P}$ and $X$ is not locally compact, then $X$ is not locally countably compact; (3) if $X\in \mathcal {P}$ and $X$ is a Lindelöf $p$-space, then $X$ is metrizable. Some known conclusions on topological groups and their remainders can be obtained from this conclusion. As a corollary, we have that if a non-locally compact topological group $G$ has a compactification $bG$ such that compact subsets of $bG\setminus G$ are $G_{\delta }$-sets in a uniform way (i.e., $bG\setminus G$ is CSS), then $G$ and $bG\setminus G$ are separable and metrizable spaces. In the last part of this note, we prove that if a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ has a point-countable weak base and has a dense subset $D$ such that every point of the set $D$ has countable pseudo-character in the remainder $bG\setminus G$ (or the subspace $D$ has countable $\pi $-character), then $G$ and $bG\setminus G$ are both separable and metrizable.
In this note, we show that if for any transitive neighborhood assignment $\phi $ for $X$ there is a point-countable refinement ${\mathcal F}$ such that for any non-closed subset $A$ of $X$ there is some $V\in {\mathcal F}$ such that $|V\cap A|\geq \omega $, then $X$ is transitively $D$. As a corollary, if $X$ is a sequential space and has a point-countable $wcs^*$-network then $X$ is transitively $D$, and hence if $X$ is a Hausdorff $k$-space and has a point-countable $k$-network, then $X$ is transitively $D$. We prove that if $X$ is a countably compact sequential space and has a point-countable $wcs^*$-network, then $X$ is compact. We point out that every discretely Lindelöf space is transitively $D$. Let $(X, \tau )$ be a space and let $(X, {\mathcal T})$ be a butterfly space over $(X, \tau )$. If $(X, \tau )$ is Fréchet and has a point-countable $wcs^*$-network (or is a hereditarily meta-Lindelöf space), then $(X, {\mathcal T})$ is a transitively $D$-space.