Tissue engineering is a very promising field of regenerative medicine. Life expectancy has been increasing, and tissue replacement is increasingly needed in patients suffering from various degenerative disorders of the organs. The use of adult mesenchymal stem cells (e.g. from adipose tissue or from bone marrow) in tissue engineering seems to be a promising approach for tissue replacements. Clinical applications can make direct use of the large secretome of these cells, which can have a positive influence on other cells around. Another advantage of adult mesenchymal stem cells is the possibility to differentiate them into various mature cells via appropriate culture conditions (i.e. medium composition, biomaterial properties, and dynamic conditions). This review is focused on current and future ways to carry out tissue replacement of damaged bones and blood vessels, especially with the use of suitable adult mesenchymal stem cells as a potential source of differentiated mature cells that can later be used for tissue replacement. The advantages and disadvantages of different stem cell sources are discussed, with a main focus on adipose-derived stem cells. Patient factors that can influence later clinical applications are taken into account.
We have evaluated the therapeutic effect of a compound mixture of caprylic acid (200 mg/kg fish), organic iron (0.2% of diet) and mannan oligosaccharide (0.4% of diet) in gilthead sea bream, Sparus aurata Linnaeus, infected with Sparicotyle chrysophrii Beneden et Hesse, 1863 in controlled conditions. One hundred and ten reared and S. chrysophrii-free fish (197 g) located in a cement tank were infected by the parasite two weeks following the addition of 150 S. chrysophrii-infected fish (70 g). Growth parameters and gill parasitic load were measured in treated against control fish after a ten-week-period. Differences in final weight, feed conversion ratio, specific growth rate and feed efficiency were not statistically significant between the experimental groups, suggesting no evident effect with respect to fish growth during the study period. Although the prevalence of S. chrysophrii was not affected by the mixture at the end of the experiment, the number of adults and larvae was significantly lower. The mean intensity encompassing the number of adults and larvae was 8.1 in treated vs 17.7 in control fish. Individual comparisons of gill arches showed that the preferred parasitism site for S. chrysophrii it the outermost or fourth gill arch, consistently apparent in fish fed the modified diet and in control fish. In conclusion, the combined application of caprylic acid, organic iron and mannan oligosaccharide can significantly affect the evolution of infection with S. chrysophrii in gilthead sea bream, being capable of reducing adult and larval stages of the monogenean. However, no difference in growth improvement was observed after the trial period, potentially leaving space for further optimisation of the added dietary compounds., George Rigos, Ivona Mladineo, Chrysa Nikoloudaki, Anamarija Vrbatovic, Dimitra Kogiannou., and Obsahuje bibliografii
A PC-based system with TV input for automatic tracking of a single and contrast object in 2D in a homogeneous and stationary environment has been developed and applied to Morris water maze experiments. Further development of the system aimed at broader support of experiments, reduction of requirements on the stationarity and homogeneity of the scene background and on multiple-object tracking is discussed. The computer control of active light markers of the tracked object applicable to multiple-objects tracking in a time-sharing regime is also mentioned in the conclusion. The latter extension of the system can be applied to kinematic studies in biomechanics, sport and rehabilitation medicine.
Weathering profiles in tropical regions usually present great heterogeneity and anisotropy of geological materials. High structural complexity and great bedrock irregularity are added when these profiles are composed of metamorphic rocks. Therefore, geological-geotechnical research initiatives in these regions imply indirect methods associated with direct methods. In this context, we studied the San Juan dam foundation in the Dominican Republic, geologically composed of young residual schist soil cover (up to 20 m), in which occurs schist layers of low resistance to SPT (2 SPT blows/30 cm) consistent with a massive and stratified marble rock, which tends to concentrate karst cavities. This geological condition, associated with the vast extent of the dam influence area, motivated the adoption of an indirect method by electrical resistivity intending to identify sites with the possibility of occurrence of cavities filled or not under the reservoir foundation and in the dam axis itself. Subsequently, a more rational initiative of mixed drillings was carried out in sites with such possibility, resulting in discarding these hypotheses and demonstrating that these cavities correspond to graphite schists and non-karst marbles, competent materials as dam foundation.
The study of mining-induced behaviors of faults and strata in underground coalmines is significant to know the mechanism and prediction of some accidents (i.e., water inrush, gas flowing and outburst). Equivalent materials are applied herein in an underground project to simulate a progressive mining operation with a normal fault occurrence. The failure–movement evolution of the overlying strata and the stress–displacement evolution of the fault are studied through a physical simulation test. The formation of a mining-induced fracture and the mechanism of accidents caused by the mining-induced fracture are analyzed. The results show that the footwall strata underwent a more notable movement compared to the hanging wall strata. Hence, the mining-induced fracture height of the footwall is higher than that of the hanging wall. The effect of the fault can be observed on the mining-induced fracture evolution of the footwall, hanging wall, and fault plane. The developed patterns of the fracture channel successively present an evolution in the shape of a “saddle”, a “trapezium”, and an “M”. The causes of accidents induced by the mining fracture are also discussed.
Distribution of the goods from a producer to a customer is one of the most important tasks of transportation. This paper focuses on the usage of genetic algorithms (GA) for optimizing problems in transportation, namely vehicle routing problem (VRP). VRP falls in the field of NP-hard problems, which cannot be solved in polynomial time. The problem was solved using genetic algorithm with two types of crossover, both including and leaving-out elitism, setting variable parameters of crossover and mutation probability, as well as prevention of creating invalid individuals. The algorithm was programmed in Matlab, tested on real world problem of spare parts distribution for garages, while the results were compared with another heuristic method (Clarke-Wright method). Genetic algorithm provided a better solution than the heuristic Clarke-Wright method.
A new way of identification of minerals was suggested. The identification was based on chemometric analysis of measured IR spectra of selected minerals. IR spectra were collected using diffuse reflectance technique. The discriminant analysis and principal component analysis were used as chemometric methods. Five statistical models were created for separation and identification of clay minerals. Up to 60 samples of various mineral standards (clay minerals, feldspars, carbonates, sulphates and quartz) from different localities were selected for the creation of statistical models. The results of this study confirm that the discriminant analysis of IR spectra of minerals could provide a powerful tool for mineral identification. Even differentiation of muscovite from illite and identification of mixed structures of illite-smectite were achieved., Michal Ritz, Lenka Vaculíková and Eva Plevová., and Obsahuje bibliografii
A method for identification of parameters of a non-linear dynamic system, such as an induction motor with saturation effect taken into account, is presented in this paper. Adaptive identifier with structure similar to model of the system performs identification. This identifier can be regarded as a special neural network, therefore its adaptation is based on the gradient descent method and Back-Propagation well known in the neural networks theory. Parameters of electromagnetic subsystems were derived from the values of synaptic weights of the estimator after its adaptation. Testing was performed with simulations taking into account noise in measured quantities. Deviations of identified parameters in case of electrical parameters of the system were up to 1% of real values. Parameters of non-linear magnetizing curve were identified with deviations up to 6% of real values. Identifier was able to follow sudden changes of rotor resistance, load torque and moment of inertia.
This paper evaluates the feasibility of using an Artificial Neural Network (ANN) model for estimating the nominal shear capacity of Reinforced Concrete (RC) beams against diagonal shear failure subjected to shear and flexure. A feedforward back-propagation ANN model was developed utilizing 622 experimental data points of RC beams, which include 111 deep beams data and 20 beams tested for low longitudinal steel ratios. The ANN model was trained on 70% of the data and then it was validated using the remaining 30% data (new data were not used for training). The trained ANN model was compared with three existing approaches, including the American Concrete Institute (ACI) code. The ANN model predictions when compared to the experimental data were very favorable, regarding also the other approaches. The prediction of ANN model was also checked for size effect and deep beams separately. The ANN model was found to be very robust in all situations. The safe form of ANN model was also derived and compared with the design equations of the three methods.
The optimization problem of two or more special-purpose functions of the energy system is subjected to an analysis. Based on experience of our research and general knowledge of partial solutions of energy system optimization at the level of control of production and power energy supply by energy companies in the Czech Republic, a special-purpose (cost) function has been defined. By analysing the special-purpose function, penalty and limitations have been defined. Using the fuzzy logic, a set of suitable solutions for the special-purpose function is accepted. An optimum of the special-purpose function is looked for using the simulated annealing method. The history of electricity consumption is sorted by day and by hour, representing the multidimensional data. When using the cluster analysis, type daytime diagrams of consumption are defined. Type daytime diagrams form prototypes of identified clusters. The so-called self-organizing neural network with Kohonen map attached is used to perform the cluster analysis. The result of our research is presented by an experiment.