Duponchelia fovealis Zeller is a polyphagous insect that has been recently reported attacking strawberry plants (Fragaria x ananassa Duchesne). Despite its economic importance there are few studies on this pest because it is difficult to rear it in the laboratory. With a constant supply of insects, studies on alternative methods of pest control can be conducted. This study aimed at developing an artificial diet for rearing D. fovealis with biological characteristics similar to those reared on their natural diet. This study was carried out in a climate-controlled room (25°C ± 2°C, RH 70% ± 10%, and 14L : 10D). The natural diet consisted of 'San Andreas' strawberry leaves (D1), while the artificial diet (D2) was developed in which beans, casein, soy protein, yeast and wheat germ are used as sources of protein. Five instars were identified. D. fovealis completed its life cycle in 38 and 40 days when fed D1 and D2, respectively. Survival was highest for the larvae fed the artificial diet. Females fed D1 lay a mean of 300.2 ± 62.3 eggs, while those fed D2, 220.3 ± 41.8 eggs. The artificial diet is suitable for the continuous rearing of D. fovealis in the laboratory., Maria A. C. Zawadneak, Rodrimar B. Gonçalves, Alex S. Poltronieri, Bráulio Santos, Adélia M. Bischoff, Aline M. Borba, Ida C. Pimentel., and Obsahuje bibliografii
The plant stress and plant vigour hypotheses are competing paradigms pertaining to the preference and performance of herbivorous insects on their host plants. Tests of these hypotheses ideally require detailed information on aspects of soil nutrition, foliar nutrient levels and parameters of herbivore fitness, but such studies are uncommon. These hypotheses were tested using the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), reared on its host plant, Brassica napus (L.), grown in an experimental system of five nutrient regimes. Different levels of fertilizer treatments significantly affected the nutrient content of B. napus foliage and this in turn affected the preference and performance of P. xylostella. Ovipositing females discriminated among host plants grown in soils subjected to different fertilizer treatments and selected plants on which pre-imaginal survival was highest, development fastest and longevity of the next generation of adults the longest, even when food was scarce. Plants subjected to herbivory by P. xylostella responded by producing elevated levels of some nutrients (e.g., sulphur), but other nutrient levels declined in infested leaves (e.g., nitrogen). Regardless of the rate of fertilizer application, plants compensated for herbivory by increasing root mass compared to un-infested control plants; plants grown in soils receiving the optimum quantity of fertilizer developed the most robust root systems when infested. The plant stress and the plant vigour hypotheses are likely to be at the opposite ends of a continuum of responses between insects and their host plants. Our investigations indicate a complex set of interactions involving both bottom-up and top-down effects, which interact to affect host plant quality, oviposition site selection by female herbivores and the fitness of their offspring.
We used butterfly assemblages to evaluate the ecological value of habitat mosaics within garrigue ecosystems in Cyprus. To understand the importance of the local plant communities for Cypriot butterflies, five plots in each of two habitat types (grass-dominated or shrub-dominated) were surveyed weekly for a period of five months in order to assess the abundance, species richness and diversity of butterflies. A total of 810 butterflies of 16 species were recorded. Indices of butterfly diversity, calculated across the whole season, were similar between grassland and shrubland dominated mosaics. However, species richness of all butterflies was consistently higher in grassland dominated mosaics throughout the whole season. The peak abundance of all butterfly species occurred during mid-season (late April - early May), with similar numbers observed in both habitat types. However, a greater abundance was observed during early and late season in grassland patches. The abundance of endemic species (Maniola cypricola, Hipparchia cypriensis, Glaucopsyche paphos) peaked earlier in the season in shrubland patches, but was higher in grassland patches in late season. This difference in seasonal timing of endemic abundance was dominated by the seasonal dynamics of M. cypricola. These results suggest that, while garrigue is characterised by its shrub flora, management to maintain a mosaic of grassland and shrubland could act to maximise the abundance and richness of indicator species groups of conservation importance. and Özge Özden, David J. Hodgson.
Geographic isolation, altitude, climate, landscape and habitat are significant predictors of butterfly diversity in mountain ecosystems. Their diversity and its dependence on altitude, aspect (compass bearing) and biogeographic characteristics of the butterflies were surveyed on the karst mountain Biokovo in southern Croatia. The results affirm that there is a high diversity of butterflies in the study area and the species composition and biogeographic elements are more dependent on altitude than aspect of the mountain. The present study indicates that climate, relief and habitat preferences strongly influence the biogeographic features of species and the relationship between species richness per site and altitude, aspect and the altitude-aspect interaction. and Iva Mihoci, Vladimir Hršak, Mladen Kučinić, Vlatka Mičetić Stanković, Antun Delić, Nikola Tvrtković.
The term cellular immune response refers to haemocyte-mediated responses, including phagocytosis, nodulation, and encapsulation. In the present study, we identified five types of circulating haemocytes in larvae of the haemolymph of the Asian corn borer, Ostrinia furnacalis (Guenée), including granulocytes, oenocytoids, plasmatocytes, prohaemocytes, and spherulocytes. The relative number of total free haemocytes per larva decreased significantly 0.5, 24, and 36 h after the injection of Beauveria bassiana conidia. Upon conidia challenge, both phagocytosis and nodulation were observed in the collected haemolymph from O. furnacalis larvae. In addition, plasma was found to be necessary for both phagocytosis and nodulation. Therefore, we here confirm that phagocytosis and nodulation are involved in O. funacalis larvae during their fight against infection by B. bassiana, and further, that the cellular immune response of O. furnacalis helps eliminate the invading organisms despite the fact that not all the fungal conidia are killed., Dongxu Shen, Miao Li, Yuan Chu, Minglin Lang, Chunju An., and Obsahuje bibliografii
Currently it remains difficult to obtain robust microsatellite markers for Lepidoptera. In an attempt to overcome the problems associated with developing microsatellite markers for this insect order we combined (i) biotin-enrichment protocol, (ii) next generation pyrosequencing (through 454 GS-FLX Titanium technology) and (iii) the use of individuals collected from eight geographically distant European populations representing three subspecies of Euphydryas aurinia. Out of 96 stringently designed primer pairs, 12 polymorphic microsatellite loci amplified without obvious evidence of null alleles in eight individuals from different subspecies. Between five and seven of these loci showed full within population applicability and three revealed to be robust and transferable between populations and sub-species, providing a first step towards the development of a valuable and robust tool for studying conservation issues and evolution in E. aurinia populations. Nevertheless, as in most studies dealing with Lepidoptera microsatellites, null alleles were detected in most of the developed markers. Our results emphasize the need for further research in order to better understand the complex evolution and organization of Lepidopteran genomes. and Melthide Sinama, Vincent Dubut, Caroline Costedoat, André Gilles, Marius Junker, Thibaut Malausa, Jean-François Martin, Gabriel Nève, Nicolas Pech, Thomas Schmitt, Marie Zimmermann, Emese Meglécz.
Because nutrients accrued during larval stages represent the major limiting factor for egg production, the use of adult feeding to enhance the reproductive output in moths is considered to be largely weight-dependent. It is hypothesized, however, that feeding by adults could be adaptive and an effective means of increasing their reproductive success. In order to test this, the calling behaviour of Spodoptera littoralis females that differed in body weight and whether they had fed or not were recorded. Two experiments were carried out. In the first, the calling behaviour of food-deprived females of different body weights was recorded. A strong positive correlation was found between body weight at emergence and the total duration of calling of females on the second to the fifth night after emergence. In the second experiment, groups of female moths that varied in body weight were given access to water or sucrose. Feeding on sucrose significantly reduced the pre-calling period and increased the total time spent calling on the six nights after emergence. The increase in time spent calling associated with ingesting sucrose were proportionately similar for both small and large females, implying that feeding by adults can result in an increase in the time spent calling by moths irrespective of larval nutritional status. Female longevity was also correlated with moth weight at emergence and/or sucrose availability. It is concluded that it is advantageous for female S. littoralis to be large and/or have access to sucrose-rich food in the adult stage as they can spend more time attracting a mate, which increases their chances of mating in early adult life, and their longer adult life may indirectly result in an increase in fecundity., Medhat M. Sadek., and Obsahuje seznam literatury
Serpin is a broadly distributed superfamily of proteins that have a crucial role in regulating various immune reactions. Herein we identified a serpin-10 gene from Antheraea pernyi that encodes a 1557 amino acid residue protein with a predicted molecular weight of 58.76 kDa. Recombinant Apserpin-10 protein was expressed in a prokaryotic expression system (Escherichia coli) and the purified protein was used to prepare rabbit anti-Apserpin-10 polyclonal antibodies. Quantitative real-time polymerase chain reaction and western blot analysis indicate that Apserpin-10 was transcribed in all the tissues examined, including haemolymph, malpighian tubules, fat body, silk gland, integument and mid gut; the greatest expression level of Apserpin-10 was recorded in the fat body and haemocytes. The comparison of different developmental stages showed that Apserpin-10 transcript level was highest in 5th instar larvae, while the lowest expression was recorded at the egg stage. We also investigated the expression patterns of Apserpin-10 in fat body and haemocyte samples, following administration of heat-inactivated gram-positive bacteria (Micrococcus luteus), gram negative bacteria (Escherichia coli), a fungus (Beauveria bassiana) and virus (nuclear polyhedrosis virus, NPV). A substantial up-regulation of Apserpin-10 expression was recorded following pathogen challenge in both the tissues tested. Further the knock down of Apserpin-10 led to down regulation of antimicrobial peptide genes. Altogether, our results indicate that Apserpin-10 is involved in the innate immunity of A. pernyi., Saima Kausar, Cen Qian, Muhammad Nadeem Abbas, Bao-Jian Zhu, Ya Liu, Lei Wang, Guo-Qing Wei, Yu Sun, Chao-Liang Liu., and Obsahuje bibliografii
A fluorescent triple staining method was developed to stain the cytoplasm of neurons red, the nuclei of all kinds of cells, including neurons, blue and the nuclei of apoptotic neurons in cyan in the twelve ventral ganglia (VG) of the Bombyx mori ventral nerve cord. This differential staining method was used to distinguish between apoptotic and normal neurons in the suboesophageal ganglion (SOG), thoracic ganglia (TG)1 to TG3 and abdominal ganglia (AG)1 to AG8 and also determine the changes in the numbers of apoptotic neurons that occur during postembryonic development. In most of the VG tested, neuronal apoptosis was most marked during the period from the end of larval life to the mid pupal stage. The greatest number of apoptotic neurons was found in SOG of day-5 pupae, TG1 to TG3 and AG1 to AG4 of day-1 pupae, and AG5 to AG8 of day-4 pupae. In vivo injection of 20-hydroxyecdysone (20E) into day-8 5th instar larvae resulted in both a considerable increase in the number of apoptotic neurons and cleavage of procaspase-3 into caspase-3, which induced neuronal apoptosis in SOG and AG6 to AG8 in day-1 pupae, and a slight increase in the number of apoptotic neurons in TG1. In TG3 and AG4, however, it had little effect on the number of apoptotic neurons or cleavage of procaspase-3. Treatment of the VG of both day-8 5th instar larvae and day-2 pupae with protein synthesis inhibitors by in vivo injection triggered a significant inhibition of neuronal apoptosis and procaspase-3 cleavage in most of these ganglia in day-1 pupae and day-4 pupae, but not TG3 and AG4, in which there was little procaspase-3 and caspase-3. In vivo injection of caspase-8 and -3 inhibitors into day-8 5th instar larvae and day-2 pupae led to a substantial inhibition of neuronal apoptosis and of procaspase-3 cleavage in SOG, AG6 and TAG, but not in TG3 or AG4 of day-1 pupae and day-4 pupae. These findings suggest that neurons that die in SOG, TG1 and AG6 to AG8 in day-1 and -4 pupae may undergo apoptosis induced by the synthesis of a new protein and caspase-8- and -3-implicated signal transduction by the increase in titre of 20E in the haemolymph but not the neuronal aopotosis in TG3 and AG4. This study provides neurobiologists with valuable information and a means of studying neuronal apoptosis in the nervous system of insects.
The Niobe Fritillary, Argynnis niobe, is a habitat specialist and as a consequence is highly endangered in contemporary Europe. To investigate its genetic diversity and population structure, 10 polymorphic microsatellite loci were developed and characterized, using a recently developed pyrosequencing method. The number of alleles per locus ranged from 2 to 21, and the observed and expected heterozygosities varied from 0.17 to 0.53 and from 0.24 to 0.92, respectively. These loci were also successfully used to study the genetic diversity of a closely related species, the High Brown Fritillary, Argynnis adippe, and will be used in future population structure studies of both these species., Jan Zima JR, Dan Leština, Martin Konvička., and Obsahuje seznam literatury