Czech models for MorphoDiTa, providing morphological analysis, morphological generation and part-of-speech tagging.
The morphological dictionary is created from MorfFlex CZ 160310 and the PoS tagger is trained on Prague Dependency Treebank 3.0 (PDT). and This work has been using language resources developed and/or stored and/or distributed by the LINDAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).
The Czech morphologic system was devised by Jan Hajič.
The MorfFlex CZ dictionary was created by Jan Hajič and Jaroslava Hlaváčová.
The morphologic guesser research was supported by the projects 1ET101120503 and 1ET101120413 of Academy of Sciences of the Czech Republic and 100008/2008 of Charles University Grant Agency. The research was performed by Jan Hajič, Jaroslava Hlaváčová and David Kolovratník.
The tagger algorithm and feature set research was supported by the projects MSM0021620838 and LC536 of Ministry of Education, Youth and Sports of the Czech Republic, GA405/09/0278 of the Grant Agency of the Czech Republic and 1ET101120503 of Academy of Sciences of the Czech Republic. The research was performed by Drahomíra "johanka" Spoustová, Jan Hajič, Jan Raab and Miroslav Spousta.
The tagger is trained on morphological layer of Prague Dependency Treebank PDT 2.5, which was supported by the projects LM2010013, LC536, LN00A063 and MSM0021620838 of Ministry of Education, Youth and Sports of the Czech Republic, and developed by Martin Buben, Jan Hajič, Jiří Hana, Hana Hanová, Barbora Hladká, Emil Jeřábek, Lenka Kebortová, Kristýna Kupková, Pavel Květoň, Jiří Mírovský, Andrea Pfimpfrová, Jan Štěpánek and Daniel Zeman.
Czech models for MorphoDiTa, providing morphological analysis, morphological generation and part-of-speech tagging.
The morphological dictionary is created from MorfFlex CZ 161115 and DeriNet 1.2 and the PoS tagger is trained on Prague Dependency Treebank 3.0 (PDT). and This work has been using language resources developed and/or stored and/or distributed by the LINDAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).
The Czech morphologic system was devised by Jan Hajič.
The MorfFlex CZ dictionary was created by Jan Hajič and Jaroslava Hlaváčová.
The morphologic guesser research was supported by the projects 1ET101120503 and 1ET101120413 of Academy of Sciences of the Czech Republic and 100008/2008 of Charles University Grant Agency. The research was performed by Jan Hajič, Jaroslava Hlaváčová and David Kolovratník.
The tagger algorithm and feature set research was supported by the projects MSM0021620838 and LC536 of Ministry of Education, Youth and Sports of the Czech Republic, GA405/09/0278 of the Grant Agency of the Czech Republic and 1ET101120503 of Academy of Sciences of the Czech Republic. The research was performed by Drahomíra "johanka" Spoustová, Jan Hajič, Jan Raab and Miroslav Spousta.
The tagger is trained on morphological layer of Prague Dependency Treebank PDT 2.5, which was supported by the projects LM2010013, LC536, LN00A063 and MSM0021620838 of Ministry of Education, Youth and Sports of the Czech Republic, and developed by Martin Buben, Jan Hajič, Jiří Hana, Hana Hanová, Barbora Hladká, Emil Jeřábek, Lenka Kebortová, Kristýna Kupková, Pavel Květoň, Jiří Mírovský, Andrea Pfimpfrová, Jan Štěpánek and Daniel Zeman.
Czech models for MorphoDiTa, providing morphological analysis, morphological generation and part-of-speech tagging.
The morphological dictionary is created from MorfFlex CZ 2.0, DeriNet 2.1 and the PoS tagger is trained on Prague Dependency Treebank - Consolidated 1.0. and This work has been using language resources developed and/or stored and/or distributed by the LINDAT/CLARIN project of the Ministry of Education of the Czech Republic (project LM2010013).
The Czech morphologic system was devised by Jan Hajič.
The MorfFlex CZ dictionary was created by Jan Hajič and Jaroslava Hlaváčová.
The morphologic guesser research was supported by the projects 1ET101120503 and 1ET101120413 of Academy of Sciences of the Czech Republic and 100008/2008 of Charles University Grant Agency. The research was performed by Jan Hajič, Jaroslava Hlaváčová and David Kolovratník.
The tagger algorithm and feature set research was supported by the projects MSM0021620838 and LC536 of Ministry of Education, Youth and Sports of the Czech Republic, GA405/09/0278 of the Grant Agency of the Czech Republic and 1ET101120503 of Academy of Sciences of the Czech Republic. The research was performed by Drahomíra "johanka" Spoustová, Jan Hajič, Jan Raab and Miroslav Spousta.
The tagger is trained on morphological layer of Prague Dependency Treebank PDT 2.5, which was supported by the projects LM2010013, LC536, LN00A063 and MSM0021620838 of Ministry of Education, Youth and Sports of the Czech Republic, and developed by Martin Buben, Jan Hajič, Jiří Hana, Hana Hanová, Barbora Hladká, Emil Jeřábek, Lenka Kebortová, Kristýna Kupková, Pavel Květoň, Jiří Mírovský, Andrea Pfimpfrová, Jan Štěpánek and Daniel Zeman.
The Czech models for Korektor 2 created by Michal Richter, 02 Feb 2013. The models can either perform spellchecking and grammarchecking, or only generate diacritical marks. and This work was created by Michal Richter as an extension of his diploma thesis Advanced Czech Spellchecker. The models utilize MorfFlex CZ dictionary (http://hdl.handle.net/11858/00-097C-0000-0015-A780-9) created by Jan Hajič and Jaroslava Hlaváčová.
The presented Czech Named Entity Corpus 1.0 is the first publicly available corpus providing a large body of manually annotated named entities in Czech sentences, including a fine-grained classification. and 1ET101120503 (Integrace jazykových zdrojů za účelem extrakce informací z přirozených textů)
Czech OOV Inflection Dataset is a Czech inflection dataset of nouns, focused on evaluation in out-of-vocabulary (OOV) conditions. It consists of two parts: a standard lemma-disjoint train-dev-test split of a subset of noun paradigms of existing morphological dictionary Czech MorfFlex 2.0 (files train, dev and test-MorfFlex); and small set of neologisms from Čeština 2.0, annotated for inflected forms (file test-neologisms).
BASIC INFORMATION
--------------------
Czech Text Document Corpus v 2.0 is a collection of text documents for automatic document classification in Czech language. It is composed of the text documents provided by the Czech News Agency and is freely available for research purposes. This corpus was created in order to facilitate a straightforward comparison of the document classification approaches on Czech data. It is particularly dedicated to evaluation of multi-label document classification approaches, because one document is usually labelled with more than one label. Besides the information about the document classes, the corpus is also annotated at the morphological layer.
The main part (for training and testing) is composed of 11,955 real newspaper articles. We provide also a development set which is intended to be used for tuning of the hyper-parameters of the created models. This set contains 2735 additional articles.
The total category number is 60 out of which 37 most frequent ones are used for classification. The reason of this reduction is to keep only the classes with the sufficient number of occurrences to train the models.
Technical Details
------------------------
Text documents are stored in the individual text files using UTF-8 encoding. Each filename is composed of the serial number and the list of the categories abbreviations separated by the underscore symbol and the .txt suffix. Serial numbers are composed of five digits and the numerical series starts from the value one.
For instance the file 00046_kul_nab_mag.txt represents the document file number 46 annotated by the categories kul (culture), nab (religion) and mag (magazine selection). The content of the document, i.e. the word tokens, is stored in one line. The tokens are separated by the space symbols.
Every text document was further automatically mophologically analyzed. This analysis includes lemmatization, POS tagging and syntactic parsing. The fully annotated files are stored in .conll files. We also provide the lemmatized form, file with suffix .lemma, and appropriate POS-tags, see .pos files. The tokenized version of the documents is also available in .tok files.
This corpus is available only for research purposes for free. Commercial use in any form is strictly excluded.
Diachronic corpus of Czech sized 3.45 million words (i.e. 4.1 million tokens). It contains 116 texts from the 14th-20th century period. The texts are transcribed, not transliterated. Diakorp v6 is provided in a CoNLL-U-like vertical format used as an input to the Manatee query engine. The data thus correspond to the corpus available via the KonText query interface to the registered users of CNC at http://www.korpus.cz
Phonological neighborhood density is known to influence lexical access, speech production as well as perception processes. Lexical competition is thought to be the central concept from which the neighborhood effect emanates: highly competitive neighborhoods are characterized by large degrees of phonemic co-activation, which can delay speech recognition and facilitate speech production. The present study investigates phonetic learning in English as a foreign language in relation to phonological neighborhood density and onset density to see whether dense or sparse neighborhoods are more conducive to the incorporation of novel phonetic detail. In addition, the effect of voice-contrasted minimal pairs (bat-pat) is explored. Results indicate that sparser neighborhoods with weaker lexical competition provide the most optimal phonological environment for phonetic learning. Moreover, novel phonetic details are incorporated faster in neighborhoods without minimal pairs. Results indicate that lexical competition plays a role in the dissemination of phonetic updates in the lexicon of foreign language learners.
The FERNET-C5 is a monolingual BERT language representation model trained from scratch on the Czech Colossal Clean Crawled Corpus (C5) data - a Czech mutation of the English C4 dataset. The training data contained almost 13 billion words (93 GB of text data). The model has the same architecture as the original BERT model, i.e. 12 transformation blocks, 12 attention heads and the hidden size of 768 neurons. In contrast to Google’s BERT models, we used SentencePiece tokenization instead of the Google’s internal WordPiece tokenization.
More details can be found in README.txt. Yet more detailed description is available in https://arxiv.org/abs/2107.10042
The same models are also released at https://huggingface.co/fav-kky/FERNET-C5