Czech morphological dictionary developed originally by Jan Hajič as a spelling checker and lemmatization dictionary. Currently it contains full morphological information for each covered wordform, as well as some derivational, semantic and named entity information.
Czech morphological dictionary developed originally by Jan Hajič as a spelling checker and lemmatization dictionary. Currently it contains full morphological information for each covered wordform, as well as some derivational, semantic and named entity information.
MorfFlex CZ 2.0 is the Czech morphological dictionary developed originally by Jan Hajič as a spelling checker and lemmatization dictionary. MorfFlex is a flat list of lemma-tag-wordform triples. For each wordform, full inflectional information is coded in a positional tag. Wordforms are organized into entries (paradigm instances or paradigms in short) according to their formal morphological behavior. The paradigm (set of wordforms) is identified by a unique lemma. Apart from traditional morphological categories, the description also contains some semantic, stylistic and derivational information. For more details see a comprehensive specification of the Czech morphological annotation http://ufal.mff.cuni.cz/techrep/tr64.pdf .
A dictionary of morphologically segmented word forms in Czech. Rules of manual segmentation are described in Pelegrinová, K., Mačutek, J., Čech, R. (2021). The Menzerath-Altmann law as the relation between lengths of words and morphemes in Czech. Jazykovedný časopis, 72, 405-414. The dictionary is based on short stories, fairy tales, letters and studies written by Karel Čapek.
A dictionary of morphologically segmented word forms in Czech. Rules of manual segmentation are described in Pelegrinová, K., Mačutek, J., Čech, R. (2021). The Menzerath-Altmann law as the relation between lengths of words and morphemes in Czech. Jazykovedný časopis, 72, 405-414. The dictionary is based on short stories, fairy tales, letters and studies written by Karel Čapek.
MSTperl is a Perl reimplementation of the MST parser of Ryan McDonald (http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html).
MST parser (Maximum Spanning Tree parser) is a state-of-the-art natural language dependency parser -- a tool that takes a sentence and returns its dependency tree.
In MSTperl, only some functionality was implemented; the limitations include the following:
the parser is a non-projective one, curently with no possibility of enforcing the requirement of projectivity of the parse trees;
only first-order features are supported, i.e. no second-order or third-order features are possible;
the implementation of MIRA is that of a single-best MIRA, with a closed-form update instead of using quadratic programming.
On the other hand, the parser supports several advanced features:
parallel features, i.e. enriching the parser input with word-aligned sentence in other language;
adding large-scale information, i.e. the feature set enriched with features corresponding to pointwise mutual information of word pairs in a large corpus (CzEng).
The MSTperl parser is tuned for parsing Czech. Trained models are available for Czech, English and German. We can train the parser for other languages on demand, or you can train it yourself -- the guidelines are part of the documentation.
The parser, together with detailed documentation, is avalable on CPAN (http://search.cpan.org/~rur/Treex-Parser-MSTperl/). and The research has been supported by the EU Seventh Framework Programme under grant agreement 247762 (Faust), and by the grants GAUK116310 and GA201/09/H057.
MSTperl is a Perl reimplementation of the MST parser of Ryan McDonald (http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html).
MST parser (Maximum Spanning Tree parser) is a state-of-the-art natural language dependency parser -- a tool that takes a sentence and returns its dependency tree.
In MSTperl, only some functionality was implemented; the limitations include the following:
the parser is a non-projective one, curently with no possibility of enforcing the requirement of projectivity of the parse trees;
only first-order features are supported, i.e. no second-order or third-order features are possible;
the implementation of MIRA is that of a single-best MIRA, with a closed-form update instead of using quadratic programming.
On the other hand, the parser supports several advanced features:
parallel features, i.e. enriching the parser input with word-aligned sentence in other language;
adding large-scale information, i.e. the feature set enriched with features corresponding to pointwise mutual information of word pairs in a large corpus (CzEng);
weighted/unweighted parser model interpolation;
combination of several instances of the MSTperl parser (through MST algorithm);
combination of several existing parses from any parsers (through MST algorithm).
The MSTperl parser is tuned for parsing Czech. Trained models are available for Czech, English and German. We can train the parser for other languages on demand, or you can train it yourself -- the guidelines are part of the documentation.
The parser, together with detailed documentation, is avalable on CPAN (http://search.cpan.org/~rur/Treex-Parser-MSTperl/). and The research has been supported by the EU Seventh Framework Programme under grant agreement 247762 (Faust), and by the grants GAUK116310 and GA201/09/H057.
This dataset adds annotation of multiword expressions and multiword named entities to the original PDT 2.0 data. The annotation is stand-off, stored in the same PML format as the original PDT 2.0 data. It is to be used together with the PDT 2.0. and grant 1ET201120505 of the Academy of Sciences of the Czech Republic and grant MSM0021620838 of the Ministry of Youth, Education and Sport of The Czech Republic
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .