Skip to search
Skip to main content
Skip to first result
Search
Search Results
Creator:
Ditrich, Oleg
Format:
print
Type:
model:internalpart and TEXT
Language:
English
Rights:
http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
Creator:
Majliš, Martin
Publisher:
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics (UFAL)
Type:
text and corpus
Subject:
multilingual corpora
Language:
Afrikaans , Tosk Albanian , Amharic , Arabic , Aragonese , Egyptian Arabic , Asturian , Azerbaijani , Belarusian , Bengali , Bosnian , Bishnupriya , Breton , Buginese , Bulgarian , Catalan , Cebuano , Czech , Chuvash , Corsican , Welsh , Danish , German , Dimli (individual language) , Modern Greek (1453-) , English , Esperanto , Estonian , Basque , Faroese , Persian , Finnish , French , Western Frisian , Gan Chinese , Scottish Gaelic , Irish , Galician , Gilaki , Gujarati , Haitian , Serbo-Croatian , Hebrew , Fiji Hindi , Hindi , Croatian , Upper Sorbian , Hungarian , Armenian , Ido , Interlingua (International Auxiliary Language Association) , Indonesian , Icelandic , Italian , Javanese , Japanese , Kannada , Georgian , Kazakh , Korean , Kurdish , Latin , Latvian , Limburgan , Lithuanian , Lombard , Luxembourgish , Malayalam , Marathi , Macedonian , Malagasy , Mongolian , Maori , Malay (macrolanguage) , Burmese , Neapolitan , Low German , Nepali (macrolanguage) , Newari , Dutch , Norwegian Nynorsk , Norwegian , Occitan (post 1500) , Ossetian , Pampanga , Piemontese , Polish , Portuguese , Quechua , Romanian , Russian , Yakut , Sicilian , Scots , Slovak , Slovenian , Spanish , Albanian , Serbian , Sundanese , Swahili (macrolanguage) , Swedish , Tamil , Tatar , Telugu , Tajik , Tagalog , Thai , Turkish , Ukrainian , Urdu , Uzbek , Venetian , Vietnamese , Volapük , Waray (Philippines) , Walloon , Yiddish , Yoruba , and Chinese
Description:
A set of corpora for 120 languages automatically collected from wikipedia and the web.
Collected using the W2C toolset: http://hdl.handle.net/11858/00-097C-0000-0022-60D6-1
Rights:
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) , http://creativecommons.org/licenses/by-sa/3.0/ , and PUB
Creator:
Nickel, H.
Type:
article , model:article , and TEXT
Language:
English
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
Creator:
Estrin, Saul and Švejnar, Jan
Publisher:
Charles University
Format:
print and 18 s.
Type:
model:monograph and TEXT
Subject:
Jugoslávie , ekonomika , and 330(497.1)
Language:
English
Description:
Saul Estrin, Jan Švejnar.
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
Creator:
Slavík, Ctirad and Yazici, Hakki
Publisher:
CERGE-EI
Format:
electronic , svazek , and 49 stran.
Type:
model:monograph and TEXT
Subject:
Práce , mzdy , vzdělanost , wages , educational attainment , 331.2 , 316.7:316.344.3 , (048.8) , 4 , and 331
Language:
English and Czech
Description:
Ctirad Slavík, Hakki Yazici., Obsahuje bibliografii a bibliografické odkazy, and České a anglické resumé
Rights:
http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public
Creator:
Adamová, Karolina and Skřejpková, Petra
Type:
article , model:article , and TEXT
Language:
English
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
Creator:
Plhal, Radim
Type:
article and TEXT
Language:
English
Rights:
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creator:
Hodek, I.
Type:
article , model:article , and TEXT
Language:
English
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
Creator:
Zhao, Guoqiang and Yin, Lirong
Format:
bez média and svazek
Type:
model:article and TEXT
Subject:
Wakamatsu tilting module , $\omega $-$k$-torsionfree module , $\mathcal {X}$-resolution dimension , injective dimension , and $\omega $-torsionless property
Language:
English
Description:
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
Creator:
Soldán, T.
Type:
article , model:article , and TEXT
Language:
English
Rights:
http://creativecommons.org/publicdomain/mark/1.0/ and policy:public