Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to 17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.
The age-dependent changes in baroreflex control of heart rate were studied in inbred Dahl rats. At the age of 8 weeks the baroreflex slope was significantly greater in salt-resistant (R/Jr) than in salt-sensitive (S/Jr) rats fed a low- salt diet. The reverse was true in 16-week-old animals. High salt intake (8 % NaCI diet for 4 weeks) suppressed baroreflex efficiency in both age groups of S/Jr animals whereas no effects occurred in R/Jr rats. Baroreflex slope was, however, significantly lower in young S/Jr rats with a severe form of salt hypertension than in adult salt-loaded S/Jr rats in which only a moderate blood pressure elevation was observed.
The oxidative stress hypothesis of aging suggests that accumulation of oxidative damage is a key factor of the alterations in physiological function during aging. We studied age-related sensitivity to oxidative modifications of proteins and lipids of cardiac sarcoplasmic reticulum (SR) isolated from 6-, 15- and 26-month-old rats. Oxidative stress was generated in vitro by exposing SR vesicles to 0.1 mmol/l FeSO4/EDTA + 1 mmol/l H2O2 at 37 °C for 60 min. In all groups, oxidative stress was associated with decreased membrane surface hydrophobicity, as detected by 1-anilino-8-naphthalenesulfonate as a probe. Structural changes in SR membranes were accompanied by degradation of tryptophan and significant accumulation of protein dityrosines, protein conjugates with lipid peroxidation products, conjugated dienes and thiobarbituric acid reactive substances. The sensitivity to oxidative damage was most pronounced in SR of 26-month-old rat. Our results indicate that aging and oxidative stress are associated with accumulation of oxidatively damaged proteins and lipids and these changes could contribute to cardiovascular injury., E. Babušíková, M. Jeseňák, D. Dobrota, N. Tribulová, P. Kaplán., and Obsahuje bibliografii a bibliografické odkazy
The growth of the prostate gland is androgen-dependent. Testosterone is converted to the most potent dihydrotestosterone (DHT) by 5α-reductase within the prostate. Androgen interacts with androgen receptors (AR) to regulate normal growth of the prostate and has also been implicated in both the progression of benign prostate hyperplasia and prostate cancer. This study was conducted to compare the mRNA expression of AR and 5α-reductase by the prostate gland from three age categories: immature, young-mature and old dogs. Quantitative gene expression was assessed by the real-time PCR and the results were expressed as a relative mRNA expression of the target gene. This study revealed that there was no significant difference in the mRNA expression of the AR gene by the prostate gland of immature, young and old dogs. In contrast, there is a highly significant (P<0.001) down-regulation in 5α-reductase gene by the prostate of young and old dogs as compared with immature dogs. However, there is no significant difference in mRNA expression of the 5α-reductase gene by the prostate gland from young and old dogs. This differential expression of AR and 5α-reductase genes, which are involved in the regulation of androgen effect on prostate gland, might reflect an age-dependent growth requirement of the gland for androgens., F. Shidaifat., and Obsahuje seznam literatury
The effects of phenytoin on threshold intensities of stimulation were studied in cortical epileptic afterdischarges (ADs) in 12-day-old and adult rats with implanted electrodes. Stimulation of the sensorimotor cortical area induced movements directly related to the stimulation as well as EEG afterdischarges (ADs) of the spike-and-wave type and of the limbic type. Rat pups exhibited lower thresholds for stimulation-bound movements and spike-and- wave ADs than adult animals. On the contrary, the limbic type of ADs was elicited with lower current intensity in adult than in immature rats. Phenytoin increased the threshold for stimulation-related movements only in adult rats, whereas threshold intensities for spike-and-wave ADs were increased and thresholds for limbic type of ADs remained uninfluenced in both age groups. The age-dependent effect on stimulation-related movements might be due to a maturation of connectivity in the motor system or to developmental changes in the voltage-gated sodium channels as the main target of phenytoin action.
The interrelationship between baroreflex sensitivity expressed in ms/mm Hg (BRS) or in Hz/mm Hg (BRSf), carotid wall thickness (IMT), and age was investigated in hypertensive and normotensive subjects with respect to the mean inter-beat interval (IBI) and blood pressure (BP). BP monitoring was performed in 25 treated hypertensives (Hy; 47.4±9.2 years of age) and 23 normotensives (Norm; 44.5±8.1 years). IMT was measured by ultrasonography. BRS and BRSf were determined by the spectral method (five-minute non-invasive beat-to-beat recording of BP and IBI, Finapres, controlled breathing at a frequency of 0.33 Hz). Significant differences between Hy and Norm were detected in IMT (Hy: 0.624±0.183, Norm: 0.522±0.070 mm; p<0.01), BRS (Hy: 3.5±1.6, Norm: 5.7±2.3 ms/mm Hg; p<0.01), BRSf (Hy: 0.005±0.002, Norm: 0.009±0.004 Hz/mm Hg; p<0.01), systolic BP (Hy: 131±21, Norm: 116±17 mm Hg; p<0.01) and diastolic BP (Hy: 77±16, Norm: 64±12 mm Hg; p<0.01). A significant correlation was found between age and IMT (Norm: 0.523, p<0.05; Hy+Norm: 0.419, p<0.01), age and BRS (Norm: -0.596, p<0.01; Hy+Norm: -0.496, p<0.01), age and BRSf (Norm: -0.555, p<0.01; Hy: -0.540, p<0.01; Hy+Norm: -0.627, p<0.01), age and IBI (Hy: 0.478, p<0.05), age and diastolic BP (Hy: -0.454, p<0.05), BRS and IMT (Hy+Norm: -0.327, p<0.05) and BRSf and IMT (Hy+Norm: -0.358, p<0.05). Hypertensive patients have increased IMT and decreased BRS and BRSf. The positive correlation between age and IMT and the negative correlation between age and BRS and BRSf are in agreement with the hypothesis that the age-dependent decrease of baroreflex sensitivity corresponds to the age-related structural changes of the carotid wall. Using two indices of baroreflex sensitivity, BRS and BRSf, we could show that baroreflex sensitivity in hypertensives is lower not only due to thickening of the carotid wall, but also due to aging.
a1_Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension – salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of reninangiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the saltsensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake., a2_On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals., J. Zicha, ... [et al.]., and Obsahuje seznam literatury
Nest boxes for breeding tawny owls (Strix aluco) were located in a mixed oak-hornbeam-beech (Quercus-Carpinus-Fagus) forest in the Duna-Ipoly National Park, 30 km northwest of Budapest, Hungary during the period 1992-2010. The 550 m altitude range (120-680 m) of the study area was divided into low and high elevations: 400 m, each containing 88 nest-boxes. We marked 77 males in their first breeding year and evaluated the lifetime territory occupation and reproductive performance for individuals which reached five, six, seven, eight or nine years old. The fledgling production of tawny owl males increased in their first, second and third years, reached a high level in years four and five, but declined once they were six years old. The relative low reproductive performance in the early and late years of the males’ lives may be attributed to the fact that the majority of males were unable to occupy high quality territories, and the rate at which individuals skipped breeding was high. We suggest that both the reduced ability to acquire high quality territories and declining fledging production in late years of males reflect senescence patterns in tawny owls.
The aim of the study was to investigate age-related changes in postural responses to platform translation with 3 various velocities. We focused on the influence of linear velocity using the smoothed profile of platform acceleration (till 100 cm.s−2 ). Eleven healthy young (20-31 years) and eleven healthy elderly (65-76 years) subjects were examined. The subjects stood on the force platform with their eyes closed. Each trial (lasting for 8 sec) with different velocity (10, 15, 20 cm.s−1 ) of 20 cm backward platform translation was repeated 4 times. We have recorded displacements of the centre of pressure (CoP) and the EMG activity of gastrocnemius muscle (GS) and tibialis anterior muscle (TA). The results showed increased maximal values of CoP responses to the platform translation. There was also observed a scaling delay of CoP responses to platform translation with different velocities in elderly. The EMG activity of GS muscle during backward platform translation was of about similar shape in both groups during the slowest platform velocity, but it increased depending on rising velocity. EMG activity of TA was not related to the platform velocity. Early parts of postural responses showed significant co-activation of TA and GS muscles of elderly. It is likely that elderly increased body stiffening in order to help their further balance control., Z. Halická ... [et al.]., and Obsahuje seznam literatury
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control., D. Abrahamová, F. Hlavačka., and Obsahuje bibliografii a bibliografické odkazy