Web Applications have become a critical component of the global information infrastructure, and it is important that they be validated to ensure their reliability. Exploiting user session data is a promising approach to testing Web applications. However, the effectiveness of user session testing technique depends on the set of collected user session data: The wider this set, the greater the capability of the approach to detect failures, but the wider the user session data set, the greater the cost of collecting, analyzing and storing data. In this paper, a technique for reducing a set of user sessions to an equivalent smaller one is implemented. This technique allows reducing of a wider set of user sessions to an equivalent reduced user session and pages, sufficient to test a Web application effectively. Reduction of a user session for several web applications like TCENet Web application, Portal application, Social Networking, Online shopping, Online Library is carried out in order to validate the proposed technique; and our technique is compared with HGS, Random Reduction technique and the Concept Lattice technique to evaluate its efficiency.
The problem of decomposing a given covariance matrix as the sum of a positive semi-definite matrix of given rank and a positive semi-definite diagonal matrix, is considered. We present a projection-type algorithm to address this problem. This algorithm appears to perform extremely well and is extremely fast even when the given covariance matrix has a very large dimension. The effectiveness of the algorithm is assessed through simulation studies and by applications to three real benchmark datasets that are considered. A local convergence analysis of the algorithm is also presented.
The ŁII and ŁII1/2 logics were introduced by Godo, Esteva and Montagna in [4] and further developed in my work [2]. These types of logic unite many other known propositional and predicate logics, including the three mainly investigated ones (Godel, Product and Łukasiewicz logic).
The aim of this paper is to show a tight connection between the ŁII logic and the product involutive logic. This logic was introduced by Esteva, Godo, Hájek and Navara in their paper [3].
We will see that all the connectives of the ŁII logic are definable from the connectives of this logic. In addition we show that the ŁII logic is an schernatic extension of this logic by a single axiom. We also make some simplification of the axiomatic system of this logic.
CD163 is a marker of macrophages with anti-inflammatory properties and its soluble form (sCD163) is considered a prognostic predictor of several diseases including type 2 diabetes mellitus (T2DM). We explored sCD163 levels at baseline and after very low-calorie diet (VLCD) or bariatric surgery in 32 patients with obesity (20 undergoing VLCD and 12 bariatric surgery), 32 obese patients with T2DM (22 undergoing VLCD and 10 bariatric surgery), and 19 control subjects. We also assessed the changes of CD163 positive cells of monocyte-macrophage lineage in peripheral blood and subcutaneous adipose tissue (SAT) in subset of patients. Plasma sCD163 levels were increased in obese and T2DM subjects relative to control subjects (467.2±40.2 and 513.8±37.0 vs. 334.4±24.8 ng/ml, p=0.001) and decreased after both interventions. Obesity decreased percentage of CD163+CD14+ monocytes in peripheral blood compared to controls (78.9±1.48 vs. 86.2±1.31 %, p=0.003) and bariatric surgery decreased CD163+CD14+HLA-DR+ macrophages in SAT (19.4±2.32 vs. 11.3±0.90 %, p=0.004). Our data suggest that increased basal sCD163 levels are related to obesity and its metabolic complications. On the contrary, sCD163 or CD163 positive cell changes do not precisely reflect metabolic improvements after weight loss., A. Cinkajzlová, Z. Lacinová, J. Kloučková, P. Kaválková, P. Trachta, M. Kosák, J. Krátký, M. Kasalický, K. Doležalová, M. Mráz, M. Haluzík., and Obsahuje bibliografii
For sequences of rational functions, analytic in some domain, a theorem of Montel’s type is proved. As an application, sequences of rational functions of the best $L_p$-approximation with an unbounded number of finite poles are considered.
This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional difference system.
This study aims at developing an artificial intelligence-based (ANN based) analytical method to analyze earthquake performances of the reinforced concrete (RC) buildings. In the scope of the present study, 66 real RC buildings with four to ten storeys were subject to performance analysis according to 19 parameters considered effective on the performance of RC buildings. In addition, the level of performance of these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). Thus, an output performance data group was created for the analyzed buildings, in accordance with the input data. Thanks to the ANN-based fast evaluation algorithm mentioned above and developed within the scope of the proposed project study, it will be possible to make an economic and rapid evaluation of four to ten-storey RC buildings in Turkey with great accuracy (about 80%). Detection of post-earthquake performances of RC buildings in the scope of the present study will facilitate reaching important results in terms of buildings, which will be beneficial for Civil Engineers of Turkey and similar countries.
We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
We are interested in algorithms for constructing surfaces Γ of possibly small measure that separate a given domain Ω into two regions of equal measure. Using the integral formula for the total gradient variation, we show that such separators can be constructed approximatively by means of sign changing eigenfunctions of the p-Laplacians, p → 1, under homogeneous Neumann boundary conditions. These eigenfunctions turn out to be limits of steepest descent methods applied to suitable norm quotients.
Let $S$ be a non-empty subset of positive integers. A partition of a positive integer $n$ into $S$ is a finite nondecreasing sequence of positive integers $a_1, a_2, \dots , a_r$ in $S$ with repetitions allowed such that $\sum ^r_{i=1} a_i = n$. Here we apply Pólya’s enumeration theorem to find the number $¶(n;S)$ of partitions of $n$ into $S$, and the number ${\mathrm DP}(n;S)$ of distinct partitions of $n$ into $S$. We also present recursive formulas for computing $¶(n;S)$ and ${\mathrm DP}(n;S)$.