Concha bullosa (CB) is among the most common anatomic variations of sinonasal anatomy. Although usually asymptomatic, CB can occasionally cause nasal obstruction or headache. Obstructions within the mucociliary transport system can develop into a mucocele or mucopyocele. A 48-year-old female, with a history of progressive headache and nasal obstruction, was referred to our department. Paranasal sinus tomography revealed a nasal mass in the left nasal cavity resembling a mucopyocele in the middle turbinate. Under general anesthesia, the purulent material was aspirated, and the lateral part of the left turbinate was resected. Mucopyoceles are common within the paranasal sinuses, but uncommon with CB; thus, they should be considered in patients with a large hyperemic nasal mass. and K. Sari, Z. K. Gencer, Y. Kantekin
This paper introduces a new variant of Petri net controlled grammars, namely a \textit{concurrently controlled grammar}, where the control over the application of the productions of a grammar is realized by a Petri net with different parallel firing strategies. The generative capacity of these grammars is investigated with respect to transition labeling strategies, definitions of final marking sets and parallel transition firing modes. It is shown that the labeling strategies do not effect the computational power whereas the maximal firing modes increase the power of concurrently controlled grammars with erasing rules up to Turing machines.
The paper presents a new method of conditional combination of quantum systems that takes into account the external environmental conditions. As a practical example of the method presented here, the well-known Bell states are modeled as conditional combination of two q-bits. Analogous approach can be applied in modeling conditional combinations of two and more quantum system sequences.
In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.
Copulas stable under univariate conditioning are studied. Limit approach to construction of conditioning stable copulas is introduced and illustrated. In the class of Archimedean copulas, Clayton copulas are shown to be the only conditioning stable copulas. Conditioning stable singular copulas are also discussed and examples of non-Archimedean absolutely continuous copulas which are conditioning stable are given.
Conditions for bimodality of mixtures of two unimodal distributions are investigated in some special cases. Based on general characterizations, explicit criteria for the parameters are derived for mixtures of two Cauchy, logistic, Student, gamma, log-normal, Gumbel and other distributions.
We characterize those regular continuous frames for which the least compactification is a perfect compactification. Perfect compactifications are those compactifications of frames for which the right adjoint of the compactification map preserves disjoint binary joins. Essential to our characterization is the construction of the frame analog of the two-point compactification of a locally compact Hausdorff space, and the concept of remainder in a frame compactification. Indeed, one of the characterizations is that the remainder of the regular continuous frame in each of its compactifications is compact and connected.
The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function f. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.